

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

GUIDANCE AND NAVIGATION SOFTWARE
ARCHITECTURE DESIGN FOR THE AUTONOMOUS

MULTI-AGENT PHYSICALLY INTERACTING
SPACECRAFT (AMPHIS) TEST BED

by

Blake D. Eikenberry

December 2006

Thesis Advisor: Marcello Romano
Second Reader: Oleg Yakimenko

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis and Engineer Degree

4. TITLE AND SUBTITLE
Guidance and Navigation Software Architecture Design for the Autonomous Multi-
Agent Physically Interacting Spacecraft (AMPHIS) Test Bed

6. AUTHOR
Blake D. Eikenberry

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT
The Autonomous Multi-Agent Physically Interacting Spacecraft (AMPHIS) test bed examines the problem of multiple spacecraft
interacting at close proximity. This thesis contributes to this on-going research by addressing the development of the software
architecture for the AMPHIS spacecraft simulator robots and the implementation of a Light Detection and Ranging (LIDAR) unit
to be used for state estimation and navigation of the prototype robot. The software modules developed include: user input for
simple user tasking; user output for data analysis and animation; external data links for sensors and actuators; and guidance,
navigation and control (GNC). The software was developed in the SIMULINK/MATLAB environment as a consistent library to
serve as stand alone simulator, actual hardware control on the robot prototype, and any combination of the two. In particular, the
software enables hardware-in-the-loop testing to be conducted for any portion of the system with reliable simulation of all other
portions of the system. The modularity of this solution facilitates fast proof-of-concept validation for the GNC algorithms. Two
sample guidance and control algorithms were developed and are demonstrated here: a Direct Calculus of Variation method, and an
artificial potential function guidance method. State estimation methods are discussed, including state estimation from hardware
sensors, pose estimation strategies from various vision sensors, and the implementation of a LIDAR unit for state estimation.
Finally, the relative motion of the AMPHIS test bed is compared to the relative motion on orbit, including how to simulate the on-
orbit behavior using Hill’s equations.

15. NUMBER OF
PAGES

147

14. SUBJECT TERMS Autonomous on-orbit spacecraft assembly, fractionated spacecraft, LIDAR,
navigation, proximity operations, multi-agent, robotic, hardware-in-the-loop test bed

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

GUIDANCE AND NAVIGATION SOFTWARE ARCHITECTURE DESIGN FOR
THE AUTONOMOUS MULTI-AGENT PHYSICALLY INTERACTING

SPACECRAFT (AMPHIS) TEST BED

Blake D. Eikenberry
Lieutenant Commander, United States Navy

B.S., University of California, Los Angeles, 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ASTRONAUTICAL ENGINEERING
and

ASTRONAUTICAL ENGINEER DEGREE

from the

NAVAL POSTGRADUATE SCHOOL
December 2006

Author: Blake D. Eikenberry

Approved by: Marcello Romano
Thesis Advisor

Oleg Yakimenko
Second Reader

Anthony J. Healey
Chairman, Department of Mechanical and Astronautical
Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The Autonomous Multi-Agent Physically Interacting Spacecraft (AMPHIS) test

bed examines the problem of multiple spacecraft interacting at close proximity. This

thesis contributes to this on-going research by addressing the development of the

software architecture for the AMPHIS spacecraft simulator robots and the

implementation of a Light Detection and Ranging (LIDAR) unit to be used for state

estimation and navigation of the prototype robot. The software modules developed

include: user input for simple user tasking; user output for data analysis and animation;

external data links for sensors and actuators; and guidance, navigation and control

(GNC). The software was developed in the SIMULINK/MATLAB environment as a

consistent library to serve as stand alone simulator, actual hardware control on the robot

prototype, and any combination of the two. In particular, the software enables hardware-

in-the-loop testing to be conducted for any portion of the system with reliable simulation

of all other portions of the system. The modularity of this solution facilitates fast proof-

of-concept validation for the GNC algorithms. Two sample guidance and control

algorithms were developed and are demonstrated here: a Direct Calculus of Variation

method, and an artificial potential function guidance method. State estimation methods

are discussed, including state estimation from hardware sensors, pose estimation

strategies from various vision sensors, and the implementation of a LIDAR unit for state

estimation. Finally, the relative motion of the AMPHIS test bed is compared to the

relative motion on orbit, including how to simulate the on-orbit behavior using Hill’s

equations.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1

1. NASA’s Demonstration for Autonomous Rendezvous
Technology (DART)...2

2. DARPA’s Orbital Express ..2
3. National Space Development Agency (NASDA) of Japan’s

ETS-7...2
4. European Space Agency’s (ESA) Automated Transfer Vehicle

(ATV) ..2
5. Air Force Research Laboratory’s (AFRL) XSS-103
6. AFRL’s XSS-11 ..3
7. NASA’s Hubble Robotic Vehicle (HRV)..3
8. Obital Recovery Group’s Orbital Life Extension Vehcile (CX-

OLEV)...3
9. Naval Research Laboratory’s (NRL) Spacecraft for the

Universal Modifications of Orbits (SUMO)3
10. AUDASS at SRL of Naval Postgraduate School (NPS)....................4

B. PROJECT GOALS AND LIMITATIONS..5
C. EXPERIMENTAL SETUP...6

II. SOFTWARE DESIGN ..11
A. USES OF THE SIMULINK/MATLAB SOFTWARE11
B. PROGRAMMING PRACTICES AND RULES USED IN THE

SOFTWARE DESIGN ..14
C. USER INPUT ...18
D. USER OUTPUT ...20
E. EXTERNAL CONNECTIONS AND DATA LINKS22

1. Onboard Sensors..23
2. Actuators...24
3. Wireless Local Area Network (via the Windows XP Computer) ..24

F. GUIDANCE, NAVIGATION AND CONTROL ..26
G. WINDOWS XP COMPUTER SOFTWARE DESIGN..............................29

III. GUIDANCE AND CONTROL EXAMPLES..33
A. DIRECT CALCULUS OF VARIATION METHOD.................................33
B. ARTIFICIAL POTENTIAL FUNCTION GUIDANCE............................40

IV. NAVIGATION ...43
A. STATE ESTIMATION ...43
B. POSE ESTIMATION STRATEGIES USING ARTIFICIAL VISION....45

1. LIDAR (Bearing/Range) ...46
2. Camera (2D Photograph) ..49

a. Using Points ..50
b. Using Edges...55

 viii

C. ONBOARD AUTONOMY..59
D. LIDAR...61

1. SICK LD-OEM LIDAR ..61
2. LIDAR Setup..62
3. LIDAR Control ..62

V. ON ORBIT APPLICATIONS ..69
A. ON-ORBIT COMPARISONS (HILL’S EQUATIONS / CLOHESSY-

WILTSHIRE EQUATIONS)..69
1. Real-time Simulator Basics ...72
2. Interception Problem...74
3. Relative Motion Obits..75
4. Applying Hill’s Equations to the AMPHIS Test Bed81

VI. CONCLUSIONS ..83
A. SUMMARY ..83
B. FUTURE WORK...84

APPENDIX: MATLAB CODE ..85

LIST OF REFERENCES..125

INITIAL DISTRIBUTION LIST ...129

 ix

LIST OF FIGURES

Figure 1. Autonomous Docking Testbed at the NPS SRL (Ref. [1])................................4
Figure 2. Base concept configuration (Ref. [5])..8
Figure 3. Experimental Setup..9
Figure 4. AMPHIS Test Bed Schematic (Refs. [5], [6]) ...10
Figure 5. xPC Target Software hierarchy (Ref. [17])..14
Figure 6. Relative parameters defining three-robot formation..19
Figure 7. Top level of the xPC Target SIMULINK model ...20
Figure 8. A single frame from the Bird’s eye view animation..21
Figure 9. (Left) Bird’s eye view showing the field of view, and (Right) the

corresponding simulated photograph from the camera on the lower left
robot ...22

Figure 10. External Connections SIMULINK module ...23
Figure 11. Onboard sensor RS-232 connections in SIMULINK23
Figure 12. UDP send and receive blocks for communication with the Windows XP

computer ..26
Figure 13. GNC SIMULINK model..27
Figure 14. Top level architecture of the Windows XP computer......................................30
Figure 15. Finite state machine for camera control...34
Figure 16. Diagram of the model used for the Direct Calculus of Variation method

(Ref. [17]) ..34
Figure 17. Example sequence at 0 (a), 15 (b), 23 (c) and 45 seconds (d) (Ref. [17])38
Figure 18. Summary of parameters for Direct Calculus of Variation method (Ref.

[17])..39
Figure 19. APFG concept..40
Figure 20. APFG simulation output ..41
Figure 21. Parameters vs. time for a APFG simulation...42
Figure 22. State estimation SIMULINK model ..44
Figure 23. State estimation from vision module ...45
Figure 24. Pose estimation simulator ..45
Figure 25. LIDAR operation and basic data return ...46
Figure 26. Convert LIDAR data to Cartesian coordinates ..47
Figure 27. Finding the floor using LIDAR..48
Figure 28. Assigning points to objects ..48
Figure 29. Estimating the pose of LIDAR objects ..49
Figure 30. Point pose estimation coordinate system and interpretation plane51
Figure 31. Projection of an object in 3-space to 2-space...52
Figure 32. Solving for an object in 3-space from an object in 2-space.............................53
Figure 33. Pose estimation using points demonstration ..54
Figure 34. Necker’s cube illusion..54
Figure 35. Actual image taken from Robot 1..55
Figure 36. Simulated image taken from Robot 1 ..56
Figure 37. Pose estimation geometry for the leg supports ..58

 x

Figure 38. Hough transform example..59
Figure 39. Onboard Autonomy SIMULINK model..60
Figure 40. Example finite state machine of the onboard autonomy system......................60
Figure 41. Illustrated output of the LIDAR...63
Figure 42. SICK OEM LIDAR Protocol stack..64
Figure 43. SICK OEM LIDAR Protocol for Profile data..67
Figure 44. CW Reference frame..71
Figure 45. Screen shot from NASA’s RPOP (Ref. [12]) ..73
Figure 46. Predicted motion for 2-3 orbits ..74
Figure 47. Rendezvous trajectory..75
Figure 48. Elliptical Relative Orbit ...76
Figure 49. Circular Orbit on a Sphere centered at (0,0,0) ...78
Figure 50. Circular Orbit Projected onto the YZ plane...79
Figure 51. Relative Motion in the ECI frame (a=70km, 0cy <&)80
Figure 52. CWRTIS Help Screen..80

 xi

LIST OF TABLES

Table 1. Relative to global naming translation ..12
Table 2. Sample absolute end state ..18
Table 3. IP address and port number configuration ...25
Table 4. SICK LIDAR OEM Product Information..62
Table 5. SICK OEM LIDAR Protocol Meaning..65

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS

AMPHIS - Autonomous Multi-agent Physically Interacting Spacecraft

NPS - Naval Postgraduate School

SSAG - Space Systems Academic Group

SRL - Spacecraft Robotics Laboratory

POSF - Proximity Operations Simulator Facility

DOF - Degrees of Freedom

CMG - Control Moment Gyro

MSGCMG - Miniature Single Gimbaled Control Moment Gyro

iGPS - Indoor Global Positioning System

GNC - Guidance, Navigation and Control

LIDAR - Light Detection and Ranging

QD - Quick Disconnect

OD - Outer Diameter

ID - Inner Diameter

NPT - National Pipe tapered Thread

RS-232 - Recommended Standard -232

TCP/IP - Transmission Control Protocol/Internet Protocol

CPU - Central Processing Unit

LEO - Low Earth Orbit

I/O - Input/Output

ISA - Industry Standard Architecture

PCI - Peripheral Component Interface

USB - Universal Serial Bus

LPT - Line Printing Terminal

KVM - Keyboard, Video, Mouse

DRAM - Dynamic Random Access Memory

CMOS - Complementary Metal Oxide Semiconductor

SCBA - Self-Contained Breathing Apparatus

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

The author would like to acknowledge the financial support of the Naval

Postgraduate School.

The author would also like to thank the following for their invaluable assistance

in the completion of this thesis:

• My beautiful wife Carri and two wonderful children Grace and Jackson, who have

kept me smiling despite the long hours away from home

• Dr. Marcello Romano and Dr. Oleg Yakimenko for their expertise and guidance

throughout the thesis process

• LCDR Jason Hall, USN, and LT Bill Price, USN, for their friendship and

partnership thus far in the developmental process of the AMPHIS test bed and for

what they still will provide

• Captain Dave Friedman, USAF, and LCDR Tracy Shay, USN, for their

discoveries of many best-practices in component selection and robotic vehicle

construction

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

The motivation behind the Autonomous Multi-Agent Physically Interacting

Spacecraft (AMPHIS) test bed is the autonomous interaction of multiple, fractionated

spacecraft. Many applications can be imagined for the ability of a spacecraft to interact

with another spacecraft, including rendezvous for repair, refueling or replenishment, and

salvage or rescue. The ability for multiple spacecraft to dock with one another is

tremendously important because it would facilitate a new paradigm for putting satellites

on orbit. No longer would a single, costly rocket launch be needed for all missions;

instead, some missions could be launched in multiple smaller vehicles as independent

units. Once on orbit, the units would autonomously maneuver and dock to form a single

functioning satellite.

The AMPHIS test bed provides a platform to implement and test many different

concepts of operations. Other applications can include multiple spacecrafts interacting

with a non-cooperative target. Since these spacecraft are possibly already on orbit, it is

not possible to presuppose the existence of any tell-tail features on the spacecraft, such as

a pattern of special light emitting diodes (LED), lasers, radio frequencies, etc. The

Russians have operated such systems for years using similar techniques, and of course,

these pre-positioned articles greatly simplify the problem (Ref. [19]). A vision based

approach could be taken to generalize the problem. Using a vision based approach, only

general shape and size characteristics of the surrounding objects must be known in order

to calculate bearing, distance and orientation. The AMPHIS test bed provides an

excellent stage to develop solutions for these and other related problems.

A. BACKGROUND

The topic of autonomous interacting spacecraft is gaining popularity as space

launch remains high cost, and automated space systems could be economical and

beneficial for certain commercial and military operations. A few real-world projects of

autononmy through the use artificial vision are given here for contextual background.

2

1. NASA’s Demonstration for Autonomous Rendezvous Technology
(DART)

The DART mission (FY05) was NASA’s first test of an autonomous rendezvous

in space. DART was supposed to demonstrate the technology needed to one day guide

supplies to the ISS, service satellites on orbit, etc. It was equipped with an Advanced

Video Guidance Sensor (within 330 feet) and Global Positioning System (GPS) (outside

of 330 feet). Unfortunately, DART used more propellant than anticipated; when it tried

to maneuver away, it struck the rendezvous satellite. (Ref. [19])

2. DARPA’s Orbital Express
Orbital Express (FY06) will demonstrate enabling technologies for autonomous

rendezvous, capture, serving, and maintenance of on orbit satellites. It will perform a

series of captures and separations over various conditions. Electric and fuel coupling

between orbital express and the rendezvous satellite will be tested, along with an onboard

robotic arm to autonomously transfer several items. Visible and infrared artificial vision

aids its autonomous capabilities. (Ref. [20])

3. National Space Development Agency (NASDA) of Japan’s ETS-7
The ETS-7 program consisted of a pair of satellites, a chase satellite and a target

satellite, that successfully undocked and re-docked autonomously in July of 1998. Also

known as Kiku-7, the pair of interacting spacecraft performed multiple tests, including

degraded equipment tests and several tele-robotic experiments that boosted Japan’s hopes

for future unmanned space flights. Scientists at NASDA claim that this experiment has

proven the cost effectiveness of autonomous, interacting spacecraft. (Ref. [21])

However, since the system was built and launched together before it was tested, there is

some doubt the system could be as effective with other types of spacecraft.

4. European Space Agency’s (ESA) Automated Transfer Vehicle (ATV)

The ATV is a European developed spacecraft for providing the International

Space Station with the automated transfer of supplies. The first of its class, the Jules

Verne successfully completed the autonomous rendezvous and docking system in

Europe’s largest ship hull test facility in September, 2006 and plans to replicate that

success in space in 2007. Its primary mode of navigation comes from the use of

independent supervision laser scanning device. (Ref. [22])

3

5. Air Force Research Laboratory’s (AFRL) XSS-10
The XSS-10 micro-satellite ejected from a Delta 2 rocket in January, 2003, and

then maneuvered itself back to the spent stage. It repeated this sequence twice more

before begin described as a success. Its navigation relied in part on an onboard television

camera. The vision, propulsion and guidance and control software all performed well for

the $100 million program. Its success is a key element in the development of future

autonomous spacecraft. (Ref. [Error! Reference source not found.])

6. AFRL’s XSS-11
The XSS-11 Demonstration Mission was launched in April of 2005. Its purpose

was to demonstrate robust, extended duration proximity operations. It is a micro-satellite

class vehicle that could autonomously rendezvous with multiple space objects using a

scanning LIDAR for navigation. It also has several guidance modes, such as forced-

motion trajectories, closed loop proximity operations, or collision avoidance that could be

switched from ground control or autonomously. (Ref. [24])

7. NASA’s Hubble Robotic Vehicle (HRV)
NASA was developing a robotic vehicle to service the Hubble Space Telescope

(HST) in FY08. Its purpose was to lengthen the life of the HST by taking it new

batteries, propellant inside of a de-orbit module, and an ejection module with robotic

units. The HRV would be paritially controlled from the ground to install new instuments,

and reroute power using the new batteries. The HRV project was recently cancelled due

to budget constraints. (Ref. [25])

8. Obital Recovery Group’s Orbital Life Extension Vehcile (CX-OLEV)
CX-OLEV’s mission is to prolong the lives of telecommunications satellites.

CX-OLEV will operate as space tug, carrying the propellant, and navigation to boost

telecommunications satellites into the proper orbit, extending their life by approximately

eight years. It will dock with the rendezvous satellite’s apogee kick motor using

artificial vision. Over one hundred satellites have been identified that could benefit from

CX-OLEV. The first mission is scheduled in 2008. (Ref. [26])

9. Naval Research Laboratory’s (NRL) Spacecraft for the Universal
Modifications of Orbits (SUMO)

The SUMO project at the NRL (currently being renamed to FREND) is being

developed to be somewhat of a space “AAA truck.” It is a satellite with a hefty fuel (∆V)

4

capacity and multiple robotic arms. If a satellite becomes incapacitated due to

malfunction, runs out of fuel, or just does not have the fuel needed to change to the

desired orbit, the FREND craft will maneuver up the target craft and grab onto it with its

robotic arms. It will then use its own propulsion to move the target craft into the desired

orbit. The NRL also operates a six degree of freedom, on orbit simulator. The

simulator takes actuator input and manipulates the satellite with the appropriate dynamics

in all six degrees of freedom, including the motion created by differing orbits. (Ref. [27])

10. AUDASS at SRL of Naval Postgraduate School (NPS)
The Spacecraft Robotics Laboratory (SRL) at the Naval Postgraduate School

supports the Graduate School of Engineering and Applied Science (GSEAS), the Space

Systems Academic Group (SSAG), and conducts research for the Air Force Research Lab

(AFRL) (Space Vehicle Directory), Defense Advanced Research Projects Agency

(DARPA) (Tactical Technology Office), and various sponsoring agents. The first

interacting spacecraft simulator robot project conducted in the SRL at NPS was the

Autonomous Docking and Servicing Spacecraft Simulator (AUDASS). (Ref [1], [3], [4])

Figure 1. Autonomous Docking Testbed at the NPS SRL (Ref. [1])

This project first conducted an autonomous docking on the planar floor in the fall

of 2005. For reference, each robot had the same basic physical properties: mass of 63 kg,

5

moment of inertia about the vertical axis of 2.3 kg m2, maximum control torque about

vertical axis of 0.16 Nm, and maximum thrust of 0.45 N per thruster. The vision sensor

used was a monocular camera which produces a two dimensional image that determined

its relative position by focusing on three non-planar infrared lights positioned on the

target robot. (Refs. [1], [2], [3], [4])

Contrary to the laboratory simulator at the NRL, the simulator at SRL can only

simulate three degrees of freedom, vice six. But the differences between them create a

completely complementary set of labs: the simulator at the NRL cannot test with the

actual actuators in the loop. Although the SRL can only test three degrees of freedom,

every element, from sensor to actuator can be tested in the hardware loop.

B. PROJECT GOALS AND LIMITATIONS
Development of the AMPHIS project represents the realization of several

overarching goals. It provides a platform for graduate level academic learning as it is an

unsolved, real-world problem requiring expertise in multiple disciplines. As an

engineering problem, it contains many foreseen and unforeseen challenges that require

innovation and cooperation from a dedicated team of engineers. Therefore, once

developed, the AMPHIS test bed will serve as a platform for simulation, development,

implementation, testing and evaluation for different sensors, actuators, artificial visions,

and guidance, navigation and control algorithms to validate and perfect a solution for the

multiple interacting spacecraft problem.

The AMPHIS project has several key limitations in scope:

1) The spacecraft simulator robots have only three degrees of freedom (3

DOF): translation on a flat, level plane, and yaw – the rotation about the

vertical axis. Implementing a hardware system that simulates a gravity

free, frictionless environment for a “free floating” robot with pitch, roll,

and yaw is beyond scope of the project. However, a multiple spacecraft,

six degree of freedom (6 DOF) computer simulation with multiple

perturbations can be used to simulate the full problem (Ref. [5], [6], [8]).

Also, the applicability of a 6 DOF system using a 3 DOF simulator is

discussed in Section IV.

6

2) The part selection is also limited, in general, to commercial off the shelf

(COTS) items; the only fully contracted part is the specially made,

frictionless floor which is flat to a high degree of accuracy. The

limitations on parts sometimes require inefficient, inelegant work-a-

rounds; at the same time, they also present unforeseen opportunities to

innovate and engineer solutions to difficult challenges. These problems

include: portable processing speed and capacity limitations; hardware

device communication and synchronization, and sensor translation and

integration. These limitations will be clarified further in the next section.

C. EXPERIMENTAL SETUP
The major components of the AMPHIS project are the Proximity Operation

Simulator Facility (POSF), and the spacecraft simulator robots. The POSF consists of a

special flat floor that measures 4.9 m by 4.3 m. Its surface is made of Epoxy material.

When used in conjunction with the air pads, the floor is essentially frictionless and

horizontal to a high degree of accuracy (residual gravity ~10-3 g) (Refs. [1], [3], [4], [5]).

The spacecraft simulator robots float via air pads over the floor. Each robot has

three degrees of freedom, two for the translation and one for the rotation about vertical

axis. Although one of the goals of the AMPHIS project is to test different sensors,

actuators, and equipment, each robot must have certain elements to function correctly,

including:

• Air pads, to reduce the friction of the POSF

• Thrusters, to provide translational movement on the planar floor and rotation

• Compresses air system, to operate the air pads and thrusters

• Reaction wheels, or control moment gyros (CMG), for attitude control

• Gyros, to sense changes in attitude

• Accelerometers, to sense translational movement

• On board computers, to calculate and control the hardware devices

• Wireless adapters, to communicate with other robots

7

• Indoor GPS, to sense an absolute position in the room

• Line counters, to determine movement on the POSF by counting lines on the

POSF (not yet developed at SRL)

• Laser mice, to determine movement on the POSF by sensing movement of the

mouse (not yet developed at SRL)

• Artificial vision, to determine the positions of other robots and obstacles on the

POSF

• Docking mechanism, to dock with other robots

• Battery and power distribution system, for powering all electric devices onboard

Furthermore, the AMPHIS project expands testing past docking, so three spacecraft

robots will be constructed once the first prototype has been developed.

Although the AMPHIS test bed will have the ability to test multiple design

concepts, a base concept was decided on for initial implementation. This base concept

consists of the following equipment on each robot:

• 2 Batteries and power distribution system

• 4 Air pads

• 4 tank compressed air system

• 2 thrusters (front and aft) that rotate ±180˚

• 2 micro CMGs

8

Figure 2. Base concept configuration (Ref. [5])

• Indoor GPS receiver

• 1 Gyro

• 2 Accelerometers

• 2 onboard PC104 computers

o One running xPC Target in real time for guidance, navigation and

control

o One running Windows XP for GPS and LIDAR processing

• 1 Wireless adapters

• 1 Ethernet router for connectivity

• 1 Sick LIDAR OEM

LIDAR

iGPS sensor

3000 psi
Air Cylinders

4 Air Pads

3 Li Ion
Batteries

Router

Dual PC104

Dual
MSGCMG

Dual
Vectorable
Thrusters

9

Figure 2 is a photograph of the prototype simulator robot in this configuration, and an

illustration of the concept of operations is depicted in Figure 3.

Master Computer/NetworkMaster Computer/Network

Dual PC104Dual PC104

Wireless NetworkWireless Network

Pseudo-GPSPseudo-GPS

GPS ReceiverGPS Receiver

Figure 3. Experimental Setup

Each robot will be equipped with the Indoor Global Positioning System (GPS)

and a mono-vision camera. The Indoor GPS system acts similarly to GPS within the

laboratory and is composed of two stationary emitters and one receiver on each robot.

These units are calibrated so the sensor on each robot can determine its position on the

floor to within a few millimeters. The LIDAR mounted on the prototype unit is used to

find the positions of the other robots relative to it. Details of the SICK OEM LIDAR are

presented in the Section III. Communications between robots via a wireless network will

be integrated into the system. The onboard computers handle image processing for state

estimation, compute control profiles, command thrust and torque actuators and are linked

to a wireless network for data exchange among the robots. The wireless network enables

10

multiple cooperation paradigms. The hardware construction of these robots has been

detailed in References [1], [3], [4], [5], [6], and [7]. A detailed test bed schematic is

displayed in Figure 4.

Figure 4. AMPHIS Test Bed Schematic (Refs. [5], [6])

Hardware limitations to this point have prevented a fully functioning proto-type.

The only way to use the Indoor GPS system in real time is by using the manufacturer’s

program, called Work Space, which must run on Windows XP. The Work Space

protocol cannot yet run in MATLAB, but only in LINUX. Therefore, the information

flow must go from the GPS transmitters to the GPS receiver, to the Work Space program

on the onboard Windows XP PC104, to an off board LINUX computer via the wireless

TCP/IP Local Area Network (LAN) for processing, back to the PC104 computer via

TCP/IP LAN, and then finally to the xPC Target PC104 via UDP. The processed

information cannot be sent directly to the xPC Target computer because xPC target

computer is not compatible with any wireless adapter. Not only have these hardware

limitations created en inefficient implementation of the design concept, but the PC104

processor has not been able to handle the workload: Windows XP, Work Space, and

MATLAB/SIMULINK cannot all run concurrently and flawlessly.

11

II. SOFTWARE DESIGN

Requirements for the AMPHIS software design were based much upon the

concept that a single program could be used in multiple places in various ways without

having to be completely re-engineered to function. For example, the code needed to

function as a stand alone simulator, yet it also had to compile into xPC Target code to

function as the guidance, navigation and control program on the spacecraft simulator

robot. It needed to function for one, two, or three robot scenarios. It also needed to be

installed on multiple robots without the need for a lot of customization. Fulfilling these

requirements simultaneously make the design much more difficult than intuition says it

should be. The section will explain how some of these design challenges were met.

A. USES OF THE SIMULINK/MATLAB SOFTWARE
There are two computers in the base design of the AMPHIS spacecraft simulator

robots. As previously mentioned, one computer will run Windows XP for wireless

device transmissions and for LIDAR processing. The SIMULINK model for the

Windows computer will be held to the end of the section. First, the software for the

guidance, navigation, and control xPC Target machine will be discussed.

The first principle concepts in the software architecture that facilitates meeting all

of the aforementioned requirements is that the software is designed around the

functioning of a single robot which can “sense” the other robots. This approach differs

from a design that treats all robots as equals, as a simple simulator would do. As the

primary robot, or the robot of focus, the software has guidance, navigation and control

only for itself; the state (position and velocity) of the other two robots is simulated from a

user defined profile, sensed with artificial vision, communicated via the wireless LAN, or

calculated from a combination of several inputs.

Since a single code is needed to be deployed on multiple robots, and then

communicate together, a naming scheme is needed to prevent conflicts between

functioning robots. For example, if each physical robot was named Robot 1, Robot 2,

and Robot 3 (denoted as uppercase “Robot”), it is desired to employ the single software

code on each robot without having to rename all of the internal variable names (denoted

12

as lowercase “robot”) to coincide with the global naming convention. For this reason, a

relative-naming convention was contrived to limit the reconfiguration to the setting of a

single variable, referred to as simply the identification (id#). Since the single code is

focused on the robot to control, the relative name for this robot is Robot 1. In other

words, robot 1 refers to all things having to do with the controlled robot, and the other

Robots are referred by as robot 2 and robot 3. Since this the naming convention could

become confusing, this translation matrix is displayed on the top level of the SIMULINK

model:

Id# / internal name robot 1 robot 2 robot 3
Id#1 Robot 1 Robot 2 Robot 3
Id#2 Robot 2 Robot 1 Robot 3
Id#3 Robot 3 Robot 2 Robot 1

Table 1. Relative to global naming translation

This matrix is interpreted as such: the numbers in the matrix indicate the global

names, or hardware names of the robots. They could be interchanged from 1, 2, 3, to A,

B, C; Blue, Red, Green; Huey, Dewey, and Louie; etc. Since each robot is assigned a

different identification number, it is used in conjunction with the interpretation matrix the

match relative names with global names. The id# determines which row the software

will index the naming scheme. Then, indexing the columns using the relative, internal

names (lowercase “robot” tags used in the universal software) will give the global name

of a particular robot. For example, for id#1 (the software running on Robot 2), the

internal name “robot 2” refers to Robot 1, and “robot 3” refers to Robot 3. Similarly, for

id#3 (the software running on Robot 3), the internal name “robot 2” refers to Robot 2,

and “robot 3” refers to Robot 1. With this naming convention, the internal name “robot

1” will always refer to its own global name. Note also that Robot 1 and Robot 3 both

refer to robot 2 as Robot 2. This naming convention allows for the portability of the

single control code to any three robots. By setting the id# uniquely, the data will be

indexed correctly for that particular robot.

One key concept for the architecture design of the software design is the

simulator/control software duality. To be truly useful for hardware in-the-loop testing,

13

the design needed to not only function as either a simulator or a control platform, but also

as a hybrid, controlling some things and simulating others. Simple manual switches were

placed in key areas to facilitate user ease of selecting what needs to be simulated and

what needs to work as a controller or sensor. These key areas are:

• The state of robot 1

o Onboard sensors of robot 1

o The plant model (state integrator)

o Simulated from user defined trajectory lookup tables

• The state of robots 2 and 3

o Onboard sensors of each robot (via UDP)

o Simulated from trajectory lookup tables (user defined)

o Vision sensors (LIDAR)

o Simulated vision sensors (simulated from the trajectory lookup

tables)

Depending on the set of sensors used, it may be desired to use a combination of several

sensors, rather than just one. A Kalman filter can provide real time updates even though

updated from the vision sensors will happen at discrete intervals in non-real time.

 The system described above can facilitate many simple configuration changes for

different testing scenarios. This key concept is an important factor when trying to

develop one or more of the modules in Figure 5. Each of these blocks can be operated in

simulation mode, or control mode.

14

Simulink Model

Guidance Model

Pose Estimation

Load Parameters

State Estimation

Robot Control Model

Artificial Vision Model

Onboard Autonomy

Figure 5. xPC Target Software hierarchy (Ref. [17])

Since the state of any robots is easily simulated with user defined trajectories using

lookup tables, robots can be tested one at a time. By simulating the other one or two

robots, the robot of focus can be developed, testing the guidance, navigation and control

blocks. To more accurately model the artificial vision sensor, parameters on the pose

estimation simulator can be configured to match realistic update rates and accuracies.

Another point key to the successful implementation of the control/simulator

software is in the ability to conduct hardware in-the-loop testing. Regardless of which

modules are being simulated, they can all be compiled and run in xPC Target. This way,

the control actuators can be tested without the robot actually having to move. As the

coordinates and attitudes of all the robots can be simulated, the actuator control and

feedback signals can be viewed and examined to the state trajectories given to it.

B. PROGRAMMING PRACTICES AND RULES USED IN THE SOFTWARE
DESIGN
Several programming practices had to be employed to ensure several

requirements could be met. First, the software had to compile and run on xPC Target.

Second, the architecture had to enable blocks from multiple designers to be integrated

seamlessly into the master software. Third, the architecture had to support multiple

guidance, navigation and control schemas. For example, a trajectory planner guidance

system works significantly different than an artificial potential function guidance system.

The architecture is desired to be flexible enough to have the major modules designed and

15

developed without having to redesign other modules. Finally, the architecture had to

support growth: new and different equipment will need to eventually be incorporated into

the design.

Several basic, good programming practices had to be followed to ensure the

aforementioned requirements could be met. These practices are listed and explained

here.

• Modularize the design. A modular design is instrumental in the

facilitation of the fulfillment the above requirements. Since there are

many ways to implement solutions to any given problem, and multiple

ways to define the division of labor of subsystems, a clear definition of the

purpose, functionality, and interface of each module must be made to

ensure development from different designers share the same vision of the

overall architecture. These explanations follow in the next several

sections of this paper.

• Standardize the interface between modules. The interface between

modules, such as the format, size, name, and context of the inputs and

outputs of every module, must be defined to facilitate integration of

different modules from different designers. Again, these explanations

follow in the next several sections of this paper.

• Avoid global tags. Global tags are often used to prevent “spaghetti” code

when sending signals from a subsystem to one or more different

subsystems in SIMULINK models with “From” and “Goto” blocks. But

there are problems with global tags: global tags take more processor time

as seen when analyzing a system with the optional SIMULINK Optimizer.

(Ref. [7]) Global tags also can lead to confusing models; all of the inputs

and outputs can not be seen from the top level system making the

requirements of the system function misleading. Instead of using global

tags, the consist use of local tags with buses alleviate all of the above

issues.

16

• Use bus creators and bus selectors where applicable. A bus is a wonder

tool compared to the standard “MUX” and “DEMUX” blocks for many

applications. When needing to send many disparate signals from one

subsystem to others, a bus selector can incorporate many different signals

onto one line. Furthermore, each line can be named for easy identification

on the bus. When using the bus selector, it is only necessary to select the

outputs needed for each subsystem; on the contrary, use of the MUX and

DEMUX blocks require the entire line to be broken apart in every

subsystem it is utilized. This feature allows the sizing requirements for

signals to be kept consistent much easier to with buses; therefore buses

facilitate seamless integration of modules from multiple designers. As

equipment is added, removed, or changed, the data routed to the bus

creator can easily be altered to accommodate the new signals without

affecting the bus selectors on the other end; only the subsystems that use

the new data will need to be changed accordingly. Buses have also shown

to take less processing time compared to MUXes from the SIMULINK

Optimizer. (Ref. [7])

• Avoid global variables. Similar to global tags, global variables can cause

naming problems. Besides the burden of ensuring a global variable is

correctly declared as such within every scope it is used, it becomes

difficult to track many different global variables when debugging, and

naming problems could cause conflict when one designer uses a global

variable name, and then their code is integrated with code in which

another designer used the same name for local variables. Also, embedded

MATLAB functions do not allow the declaring of global variables. One

important exception is found in the SIMULINK code for the Windows

computer. Since objects cannot be passed in SIMULINK, the variable

which contains the serial port information for the LIDAR connection must

be declared as global.

17

• Avoid enabled subsystems. Enables subsystems are subsystems that

operate only with they are enabled by some input parameter. Enabled

subsystems cannot contain rate transition blocks (nor can they contain

global tags, but those are avoided as well). As the AMPHIS project

develops, some hardware may need these rate transition blocks to function

correctly. If rate transition blocks are required in an enabled subsystem, a

re-design would be necessary to incorporate both features. The work

around for this conflict is not simple and case dependent.

• Avoid MATLAB Function blocks. MATLAB Function blocks are not

fully compatible with xPC Target, and therefore cannot be used on the

xPC Target machine. In the non-real time Windows computer, however,

one is used for LIDAR control until the design can be ported over to xPC

Target. Where applicable, Embedded MATLAB Function blocks are a

better substitute and are used.

• Use a standardized naming convention. Using standardized names are less

of a problem when almost all variables are locally defined. Only the

naming interface between modules needs to be standardized. Primary

name standards are as follows:

o state: refers to the system state; for the base configuration, these

variables are the coordinates and attitude (xi, yi, θi), and the time

rate of change of xi, yi, θi for i = 1 to 3 robots.

o state 1, or st1: refers to the state of robot 1, or the robot on which

the software is running.

o dead reckoning, or dr: the state as calculated only by the plant

propagator.

o ref, or user: the user defined reference signal, containing the

desired end state

o gcmd: guidance commands for the guidance module

o vcmd: vision commands for the vision sensor

18

o act: signals for the actuators

o act_fb: actuator feedback signals

o xlink: the crosslink between robots, for incoming and outgoing

messages

o input_bus: all of the information from external connections needed

for state estimation

o u1: a structure containing all control related variables for robot 1 to

be saved for animation and analysis

o v1: a structure containing all vision related variables for robot 1 to

be saved for animation and analysis

C. USER INPUT
The only input that is desired to get from the user is the end state, or end position

of each of the robots. An initial state must also be specified, but in the case of state

determination from onboard sensors, it is desirable for each robot to determine the initial

state autonomously. Of course, a simulation will always require a specified initial state.

The desired end position can be expressed in two different ways: absolute and relative.

Every maneuver considered here will be a rest to rest maneuver, so the discussion of

initial and final rates will be limited to say that they are all zero.

An absolute end state is the simplest and most forward way to express the desired

outcome of the maneuver. This method is simply defining the final coordinates and

attitude for each robot. For example, an absolute end state could be:

 Xf Yf Өf (attitude)

Robot 1: 2.0 m 3.0 m 10°

Robot 2: 1.5 m 2.0 m 95°

Robot 3: 4.0 m 3.5 m 190°

Table 2. Sample absolute end state

19

Note that the user is not inputting how to arrive at the end state; the onboard guidance,

navigation and control systems will have to successfully maneuver each robot, with

collision, to the final desired positions.

Since a large part of the AMPHIS project deals with relative motion, the other

way to define the final end state is in relative coordinate. This can be accomplished by

defining six variables (per robot) that describe a desired end state: a relative bearing to

each robot, a range to each robot, and an angle that defines the orientation of each robot

on its relative bearing. Note that there is no absolute information defined here. The

system must find absolute values itself for the described system. For example, Figure 6

is a sample desired end state and the corresponding matrix from Robot 1 (blue). Again,

the final desired rates are always zero.

O12

R12

R13 B13

O13

B12
Robot 1

Robot 2

Robot 3

O13B13R13To Robot 3 (green)

O12B12R12To Robot 2 (red)

OrientationBearingRangeFrom Robot 1 (blue)

O13B13R13To Robot 3 (green)

O12B12R12To Robot 2 (red)

OrientationBearingRangeFrom Robot 1 (blue)

Figure 6. Relative parameters defining three-robot formation

Each robot must have a similar set of relative values that define the equivalent

formation: the numbers that describe the final position relative to Robot 1 will be

different for Robot 2 and Robot 3; however, they will all be related. For ease of user

input, there is an automatic translation for relative final end states. This translator is the

simplest of the three major modules on the top level of the SIMULINK model (upper left

module in Figure 7). Once the matrix in Figure 6 is created from the perspective of

Robot 1, the translator will put the matrix in a format from the perspective of the robot’s

identification number. This geometrical transformation is included in the Appendix.

20

Figure 7. Top level of the xPC Target SIMULINK model

D. USER OUTPUT
There are three major categories of data that is desired to be output to the user for

analysis and animation. These are: state data, control data, and vision sensor data. To

prevent a convoluted workspace, an output structure variable is used via a simout block

for each of these categories, named “state”, “u”, and “v” respectively. All values needing

analysis are saved in one of these three variables. For xPC Target, the out block is used

at the top level of the model alternatively, because xPC Target does not support the

simout block. (Ref. [6]) With the amount of moving parts in the system, it is imperative

to enable animation of the simulations to be able to have an accurate sense of what is

happening. Specifically, it is necessary to follow the movements of each robot and

relevant moving parts, such as vectored thrusters, throughout the maneuver. Figure 8

displays a single frame of a simulation using three robots in the base configuration.

id index
1 1 2 3
2 2 1 3
3 3 2 1

Top Level

2
state

1
u

[act]

[xlink_out]

[ref]

[state]

[xlink_in]

[act_fb]

[input_bus]

[vcmd]

id

id

u1 state1

input_bus

user

act_f b

xlink_in

u

state

xlink_out

act

v cmd

GNC

[ref]

[xlink_in]
[vcmd]

[xlink_out]

[input_bus]

[act_fb]
[act]

[state] state

act

v cmd

xlink_out

input_bus

act_f b

xlink_in

External Connections

id

in

refxlate

-C-

Command

21

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Bird's Eye View

y-axis (East) (m)

x-
ax

is
 (N

or
th

) (
m

)

time=34.5

Figure 8. A single frame from the Bird’s eye view animation

Note the dual fore and aft vectored thrusters are shown with their relative pointing

direction on the blue (lower right) robot, and also their amount of thrust produced at a

given instant indicated by the plume coming out of it. Successive frames plotted in this

manner facilitate a clear understanding of the strengths and weaknesses of control

scheme.

Figure 9 illustrates another perspective of animation developed for a slightly

different configuration (see the section on “Direct Calculus of Variation Method” for a

full description of the configuration). In this configuration, there is a single camera on

each robot that has the capability to slew 360°. A view from any of the three cameras can

be simulated at and animated as illustrated. On the left Figure 9, a bird’s eye view of the

floor is shown highlighting the field of view from the blue (lower left) robot’s camera.

The right side of Figure 9 depicts what is seen in that field of view from the camera

perspective.

22

Figure 9. (Left) Bird’s eye view showing the field of view, and (Right) the

corresponding simulated photograph from the camera on the lower left robot

An animation script can automatically be called upon the completion of the

simulation. This script is customized to animate the devices for a particular configuration

and uses the three structure variables: state, u, and v. This animation code is included in

the appendix.

E. EXTERNAL CONNECTIONS AND DATA LINKS
The External Connections and Data Links module is located in the lower left in

Figure 7. The purpose of this module is to have all external connections collocated to

facilitate easy reconfiguration and debugging of external devices. The three categories of

connections are the Wireless LAN, Onboard Sensors, and Actuator Feedback. The

External Connections SIMULINK module is shown in Figure 10.

23

Figure 10. External Connections SIMULINK module

1. Onboard Sensors
All onboard sensors and actuators are connected via RS-232 serial cables, as most

devices are commonly available with RS-232 connectors, and more importantly, xPC

Target has ready made blocks to interact with RS-232 devices. The ports associated with

these connections are commonly known as COM1, COM2, COM3, and COM4. In the

base configuration described in a previous section, the onboard sensors that are directly

interfaced through xPC Target are the gyro, and the accelerometers. Indoor GPS and

vision sensors are interfaced indirectly through the onboard Windows XP computer, as

explained in the following section. All of the data collected from the onboard sensors can

be used to help with state estimation. Figure 11 displays the blocks used for the onboard

sensors.

Sensor Interface

1
sens_bus

angular_rate

GYRO

accel

Accelerometer

td

accel

Figure 11. Onboard sensor RS-232 connections in SIMULINK

Refer to References [5], [6] and [7] for full discussion on sensors.

Exte rnal Conne ctions

3
xl ink_in

2
act_fb

1
input_bus

state

x link_out

v cm d

xlink_in

udp_bus

UDP windows com puter

sens_bus

Onboard Sensors

ACT act_f b

Actuator

4
xl ink_out

3
vcm d

2
act

1
state

sens_bus

udp_bus

24

2. Actuators
The Actuator module collocates all of the actuator connections in one module. In

the base configuration described in a previous section, the actuators that are directly

interfaced through xPC Target are the micro CMGs and the thrusters. Actuator feedback

is a collection of signals returned from the actuators that are used to ensure that the

actuators are reacting properly to the given control signal. For example, the actual

positions of the thrusters and CMGs are part of the actuator feedback. The Control

algorithm will use this information by comparing it to commanded positions of the

actuators. Refer to References [5], [6] and [7] for full discussion on actuators.

Actuator feedback interface is similar to the onboard sensor interface. Both are

connected via serial ports and are interfaced directly with xPC Target. The major

difference between the two is where the data is sent and how it is used: the onboard

sensor data is sent to the Navigation module for state estimation, while the actuator

feedback is used only in the Control module. Figure 10 illustrates how the actuator

inputs and outputs are held separate from the other external connections.

3. Wireless Local Area Network (via the Windows XP Computer)
The Wireless Local Area Network (LAN) is for communication between robots.

In a cooperative robot scenario, it is useful to have information sent between robots.

State information passed between robots provides a very robust sensory network,

especially when compared to onboard vision sensors. Other things, such as guidance

modes and status messages are also useful to pass for coordination and synchronization

between cooperating robots. In Figure 10, these messages are indicated by the “xlink_in”

and “xlink_out” tags. The xlink messages are generated and utilized by the Navigation

Module. Refer to the Navigation chapter for a more detail explanation on this topic.

A signal for artificial vision sensor control is also provided in the external

connections module (indicated as “vcmd” in Figure 10). The Windows XP computer

provides artificial vision sensor control as described in the next section; it therefore needs

to have a communication link from the Navigation module that controls vision

commands. In the case of a LIDAR, these commands are simply to activate or stop

25

LIDAR sensing and processing. A different sensor, however, may require more

complicated control signals. A rotating camera, for example, may require interactive

pointing commands.

Communication between the xPC Target and Windows XP computer is

accomplished using User Datagram Protocol (UDP). Blocks for sending and receiving

data using this protocol are predefined in xPC Target. The only parameters required to

setup these blocks are:

1) IP address

2) Port number

3) Maximum data packet size

Figure 12 displays the UDP send and receive blocks for communication with the

Windows XP computer. The entire IP address and port number configuration table is

displayed in Table 3. The connections to the off board LINUX are discussed in the

following section.

IP Address (192.168.) Port Numbers

Device Robot1 Robot2 Robot3 Shore FROM
Win1 Win2 Win3 xPC1 xPC2 xPC3 Linux

ETHERNET (.1.) TO Win1 5021 5031 4001 5000
Router 111 211 311 Win2 5012 5032 4001 5000
Windows 112 212 312 Win3 5013 5023 4001 5000
xPC 113 213 313 xPC1 4002

xPC2 4002
WIRELESS (.2.) xPC3 4002
SSID heweynet leweynet deweynet amphisnet Linux GPS GPS GPS
Router 111 211 311 1
Windows / Linux 112 212 312 10

Table 3. IP address and port number configuration

26

UDP Receive Blocks

2
udp bus

1
xlink_in

UDP
Receive
Binary

FROM
WINCOMP1

UDP
Receive
Binary

FROM
WINCOMP

ASCII
DecodeD

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

ASCII Decode1

ASCII
Decode

D

1

2

3

4

5

6

7

8

9

10

11

ASCII Decode

gpstime

y

x

r2

o2

b3

r3

o3

lidar

gps

lidartime

pe2

pe3

gy ro

x2

y 2

t2

xd2

xd2

y d2

td2

pos2

rate2

st2

udp2

b2

x3

y 3

t3

xd3

y d3

td3

st3

rate3

pos3

time3

udp3

UDP Send Blocks

UDP
Send

Binary

Send

UU(R,C)

Selector ASCII
Encode

D

1

2

3

4

5

6

7

8

9

ASCII Encode
3

vcmd

2
xlink_out

1
state

Figure 12. UDP send and receive blocks for communication with the Windows

XP computer

The bus creator in Figure 10 collects all of the date for state estimation from the

Windows XP computer and from the onboard sensors, and routs it to the Navigation

block. Refer to the Navigation chapter for an explanation how this data is used.

F. GUIDANCE, NAVIGATION AND CONTROL
The SIMULINK guidance, navigation and control (GNC) module is the code that

takes the system from its initial conditions and then, based on sensor input, manipulates

the actuators in a way to move the system to the desired final state. It is seen on the right

27

of Figure 7. The basic interaction between the three parts: guidance, navigation and

control, follows. The navigation module provides two functions. First, it uses sensor

information to determine the system state. It then uses that information to manage how

the guidance system will operate. For example, if the robots are separated by a large

distance, each robot may use a different guidance mode than if they were closely

separated and ready to dock. The guidance module will then take into account the current

system state and the final desired system state and task the control system to move in the

manner decided. The control module then takes its task and feedback from the actuators

to calculate the control inputs for the actuators. As the actuators move the robot, and

therefore change the system state, the navigation updates its estimation for the state, and

the cycle continues. Each module will now be discussed in more detail. It is important to

state that this discussion is based largely on the base configuration previously described;

moreover, the behavior of these modules will depend on how the designer implements

them. There is no single correct answer, and therefore, there is no standard way each of

these modules will interact. This discussion will therefore remain general, and then two

specific examples will follow in the next section. Also, the following chapter focuses

solely on Navigation, so that discussion will be deferred until then. Figure 13 is the GNC

SIMULINK model.

Figure 13. GNC SIMULINK model

[x_i y_i theta_i +rates] i=1..3
[x_1 y_1 theta_1 +rates]

[x y theta +rates]ref

state final + cmd

GNC

simulated vision variables

5
vcmd

4
act

3
xlink_out

2
state

1
u

v1

input_bus

st_dr

state

v

State Estimation

user

xlink_in

state

gcmd

xlink_out

v cmd

Navigation

gcmd

state

task

Guidance

[state]

[state] [state]

task

state

act_f b

u

act

st_dr

Control

4
xlink_in

3
act_fb

2
user

1
input_bus

28

The current system state estimation, the user’s final desired state, and a command

from the onboard autonomy module are input to the guidance module so it may manage

the guidance mode, or the manner in how the guidance system behaves. In general, the

system state consists of the coordinates of each robot, the attitude of each robot, and the

rates at which each of those are changing. Other algorithms may use other parameters as

part of the state, such as accelerations, or the positions of control devices. Obviously,

these types of changes will require adjustments to several areas of the system.

The guidance module has to work towards the timely movement of the robots to

the desired end state while also avoiding collision with other robots and the floor barriers.

Two basic methods are here proposed. First, the guidance module can act as a trajectory

planner: it will take into account the current and desired states, and then calculate all the

control inputs to be applied over time to move the system to the desired end state.

Second, the guidance module could consider the current and desired states, and then

calculate a task for the controller that is valid for only that instant. Both methods have

their advantages and disadvantages; the designer must evaluate the following trade space

to determine which type of guidance mode to develop.

Simplicity and computation considerations: Although not necessarily true in every

case, trajectory planning guidance systems tend to be much more complicated and

computation intensive, while instantaneous tasking systems tend to have very light

computation requirements. This fact is rather intuitive considering that trajectory

planning algorithms have to calculate many points along a path over time vice a single

point in time. Even if a complete trajectory can be calculated in a matter of seconds, it

can prevent real-time trajectory updates. Instantaneous tasking algorithms, conversely,

only use current information to quickly determine what needs to be accomplished at that

particular instant, and can therefore be useful on real-time systems.

Deterministic and optimality considerations: There is no comparison between

trajectory planning algorithms and instantaneous tasking algorithms when considering

optimality. Trajectory planning systems can calculate and (attempt to) minimize cost

functions, giving at the very least a performance index relative to other trajectories.

Instantaneous tasking algorithms do not take into account the entire path, and therefore

29

cannot predict the cost to complete it. In the space environment, using non-optimized

algorithms with limited fuel is not recommended, however they provide something to

compare against in the AMPHIS lab, and can work with slower processors.

One example of each type of guidance mode is provided in later sections: the

Direct Calculus of Variation method is a trajectory planning algorithm and the Artificial

Potential Function method is an instantaneous tasking algorithm. Many other guidance

and control algorithms could be developed. For example, some programs can provide

theoretical optimal solutions to similar problems and could be used to find a performance

benchmark. (Ref. [18])

Finally, the control module takes the current state, the task given to it by the

guidance system, and feedback provided by the actuators to determine the control inputs

to the actuators. A popular controller used in the base configuration is the PID controller.

The control module must also provide other functions. Once the PID controller has

determined the necessary accelerations needed from the system dynamics, a control

mapping must decide how all the available control devices will contribute to the control

effort. Each of these signals must then be translated into actuator commands. An

integrator, or system plant is also required to model the kinematics of the system; this is

required for simulation, but can is as a dead reckoning solution for state estimation.

Reference [6] contains an in depth discussion on AMPHIS control.

G. WINDOWS XP COMPUTER SOFTWARE DESIGN
The Windows XP computer has two basic functions: first it acts as a conduit for

Wireless LAN communications. This intermediate platform is necessary because there

are no wireless adapters available for the xPC Target computer. Therefore, all incoming

and outgoing communications must be accomplished with the Windows XP computer,

and relayed to/from the xPC Target computer. The second function of the Windows XP

computer is to provide artificial vision processing and control. These functions are

accomplished here for two reasons: 1) to help distribute the computational load across

processors; and 2) because the MATLAB functions that control the LIDAR are not

compatible with xPC Target.

30

The resulting software architecture on the Windows XP computer is relatively

simple compared to the xPC Target computer. One module handles all of the LIDAR

control and processing, while the second acts an External Connection module similar to

the one on the xPC Target computer. Operation of the LIDAR is discussed fully in the

Navigation Chapter. Figure 14 is the top level architecture of the Windows XP computer.

The code that controls the LIDAR is included in the Appendix.

v cmd

states

lidar

l idar controller

lidar

v cmd

states

comm center

xPC
Target

Sensors

Actuators

Wireless
LAN

iGPSiGPS

LIDAR

Windows XP Computer

Robot2

Robot3

iGPS
xmit

Figure 14. Top level architecture of the Windows XP computer

It is important to restate here another important function the Windows computer may

provide. The Indoor GPS system requires a proprietary program named “Work Space” to

interpret the signals received by the onboard iGPS receiver. This program runs only on

Windows; therefore, either the onboard Windows computer can connect directly to the

iGPS receiver with a serial cable, or, if a wireless serial relay is available, Work Space

can run on an off board Windows computer and communicate with the iGPS receiver via

a wireless serial link.

A major complication with the Work Space program is that its protocol has only

been developed in C++ (on a LINUX computer). In order to obtain real time information

from the Work Space program, the LINUX computer queries the Work Space program

via the TCP/IP protocols, processes the information, and then relays the relevant data to

the xPC Target machine via the Windows XP computer on the Wireless LAN.

31

It is also highly desirable to avoid running the Work Space program on the

onboard computer. It does not run well concurrently with SIMULINK; in order for the

Work Space program answer queries from the off board LINUX computer in real time, it

must be run as “Above Normal” priority. Setting the Work Space task to this priority

creates an unstable environment which induces the entire Windows computer to freeze or

crash unpredictably. Unfortunately, there is no support for the Indoor GPS system, as the

company has changed ownership. There are, however, promises that a new format will

correct all of these problems in the summer of 2007.

32

THIS PAGE INTENTIONALLY LEFT BLANK

33

III. GUIDANCE AND CONTROL EXAMPLES

A. DIRECT CALCULUS OF VARIATION METHOD
One example of a fully developed simulation model was completed using the

Direct Calculus of Variation method. In this method, the three position variables for each

robot were approximated to vary as high order polynomials. Using polynomials,

velocity, acceleration, and jerk can be found through simple theoretical differentiation.

The inverse dynamics then directly indicate the control profiles necessary for to achieve

the desired position trajectories. Using MATLAB’s fminsearch function, the family of

polynomials can then be searched for pseudo-optimal results. (Ref. [14], [15], [16])

The following discussion explains the solution to a rest to rest maneuver in detail.

Some of the notation is slightly different than the notation used in other sections of this

paper to be consistent with Reference [17]. The configuration in this simulation differs

from the base configuration mentioned earlier. The major differences are:

1) The thruster type: instead of using dual fore/aft thrusters, a single free-

rotating variable vectored thruster is modeled. It is assumed to always

create thrust through the robot’s center of mass.

2) The artificial vision sensor: a digital camera which takes two dimensional

images and a vision processing computer is responsible for determining

were the other robots are relative to the robot on which the camera is

mounted. A camera control algorithm controls the camera based on the

predicted location of the target robot. The camera will turn to the desired

bearing, take a photograph, and pass it to the state estimation module. The

camera will alternate photographs between multiple robots. Figure 15

displays the Finite State Machine that will control the camera.

34

Take photo/
Process
image of
robot 2

Take photo/
Process
image of
robot 1

Initialize Scan entire
floor for
robots

Update
tracking
tables

Figure 15. Finite state machine for camera control

A diagram of this setup is in Figure 16. Without loss of generality, only normalized

control forces were calculated.

Each robot is represented
by the 3-DoF model

X

ψ

α Vectored
thruster (F, δ)

Robot front

Robot 1

Y

D

W

x

y

Robot 2

Robot 3

Reaction
wheel (T)

Figure 16. Diagram of the model used for the Direct Calculus of Variation

method (Ref. [17])

The problem is first defined mathematically. The system of nonlinear equations

driving each robot’s dynamics (1,3i =) is given below:

cos()
sin()

i i

i i i i

i i i i i i i i

i i i i i i i

x u
y v
x u F T
y v F

ψ ω
ψ α ψ ω
ψ α α δ

=
= =
= = + = =
= = + =

&

&&

&& &&& &

&&& &

The seven states per robot are its x and y coordinates, x and y, components of its linear

velocity, u and v, respectively, the attitude angle ψ (defining robot’s orientation with

respect to the x-axis), the angular velocity ω controlled by the reaction wheel, and the

angle α defining the direction of thrust with respect to robot front. Three available

35

controls (per robot) are the magnitude of its linear acceleration
i

i
i

ThrustF
m

= (max0 i iF F≤ ≤),

the control input δ affecting orientation of the thrust and the angular acceleration
i

i
i

TorqueT
I

= (max
i iT T≤). (Ref. [17])

While maneuvering, all robots (1,3i =) must obey the geometrical constraints of

the arena: 0.5 () 0.5iMSD x t D MSD≤ ≤ − , 0.5 () 0.5iMSD y t W MSD≤ ≤ − , 0 , ft t t⎡ ⎤∈ ⎣ ⎦ (where MSD

stands for minimum safe distance between two robots and is equal to the diameter of the

circles drawn on Figure 16 around each robot), and avoid collisions with other robots:

() ()2 2 2() () () () 0i k i kx t x t y t y t MSD− + − − ≥ , , 1,3, i k i k∀ = ≠ , 0 , ft t t⎡ ⎤∈ ⎣ ⎦ . (Ref. [17])

It is required to satisfy the following sets of boundary conditions per each robot (1,3i =):

0 0

0 0

0 0

() ()
() ()
() ()

i i i i i
f f

i i i i i
f f

i i i i i
f f

x t x x t x
y t y y t y

t tψ ψ ψ ψ

= =
= =
= =

0 0

0 0

0 0

() ()
() ()
() ()

i i i i i
f f

i i i i i
f f

i i i i i
f f

x t u x t u
y t v y t v

t tψ ω ψ ω

= =
= =
= =

& &

& &

& &

0 0 0 0

0 0 0 0

0 0

() cos() () cos()
() sin() () sin()
() ()

i i i i i i i i i
f f f f

i i i i i i i i i
f f f f

i i i i i
f f

x t F x t F
y t F y t F

t T t T

ψ α ψ α
ψ α ψ α

ψ ψ

= + = +
= + = +
= =

&& &&

&& &&

&& &&

 (Ref. [17])

In general, the performance index includes three appropriately weighted terms. The first

one, 1
ft , assures minimum transition time for the first robot, the second one,

2 1 3 2
f f t f f tt t t t− − ∆ + − − ∆ , guarantees sequential (t∆ -second apart) joining the final

formation, and the third one,
0

3

1

i
ft

i

r t

F dt
=
∑ ∫ , takes care of minimizing overall gas consumption

to produce thrust. (Ref. [17])

To generate quasi-optimal collision-free trajectories for all three robots in real

time (and to be able to update them every 2-3 seconds) the direct method of calculus of

variations was chosen. (Ref. [14]) To apply it we need to introduce an independent

argument τi for each robot (1,3i =) and using the corresponding speed factors λ i

(different for each robot) rewrite the original system as

36

cos()

sin()

i i i

i i i i i i

i i i i i i i i

i i i i i i i i

x u

y v

u F T

v F

λ

λ ψ ω λ

ψ α λ ω λ

ψ α λ α δ λ

′ =

′′ = =

′′ = + =

′′ = + =

 (Ref. [17])

Next, three reference functions (per robot) are established for coordinates ix and
iy , as well as for the attitude angle iψ : ()i i

xP τ , ()i i
yP τ and ()i iPψ τ , respectively (1,3i =). If

polynomials are used, then the order of polynomial to use is defined by the number of

boundary conditions, which in this case the minimum order of approximating

polynomials is five. (Ref. [14]) For this specific problem to have an additional flexibility

(to allow avoiding collisions), the order of polynomials was increased by two to be able

to vary the third derivative of ix , iy and iψ , 1,3i = at both ends. (Ref. [17])

Explanation of the optimization routine follows. Given the boundary conditions,

nine reference polynomials, ()i i
xP τ , ()i i

yP τ and ()i iPψ τ , 1,3i = , have to be determined, and

their coefficients computed using the boundary conditions and initial guesses on the third

derivatives 0
ix ′′′ , i

fx ′′′ , 0
iy ′′′ , i

fy ′′′ , 0
iψ ′′′ , i

fψ ′′′ , 1,3i = . These variables along with the lengths of

three virtual arcs i
fτ form the vector of variable parameters Ξ . Next, applying inverse

dynamics, the remaining states can be solved for numerically. Specifically, start by

dividing each virtual arc i
fτ (1,3i =) onto N–1 equal pieces

1

i
fi

N
τ

τ∆ =
−

 so that there are N

equidistant nodes 1,j N= along each virtual arc. For each robot, all states at the first point

1j = (corresponding to 1 0 0i iτ τ= =) are defined. Additionally, define 1 1iλ = , 1,3i = . (Ref.

[17])

For each of the subsequent N–1 nodes 2,j N= , the current values of robots’

coordinates and attitudes are calculated using each corresponding polynomial: ()i i i
j x jx P τ= ,

()i i i
j y jy P τ= and ()i i i

j jPψψ τ= , 1,3i = . Then, using the inverse dynamics for the first four

equations of the system, the sum of angles i
jψ and i

jα , and current control acceleration

are calculated: arctan
i
ji i

j j i
j

y

x
ψ α

⎛ ⎞′′
⎜ ⎟+ =
⎜ ⎟′′⎝ ⎠

, 2 2i i i i
j j j jF x yλ ′′ ′′= + . (Ref. [17])

37

Inverting the last equation of the system and using the first of two equations, the

second control is obtained: 2cos
i i i i
j j j ji i i i i i

j j j j j ji
j

x y x y

y
δ λ α λ ψ ψ

⎛ ⎞′′′ ′′ ′′′′′−′ ′⎜ ⎟= = −
⎜ ⎟′′⎝ ⎠

. (Ref. [17])

From the first two equations of the system, the current speed, 2 2i i i
j j jV u v= + , where

i i i
j j ju xλ ′= , i i i

j j jv yλ ′= , is defined, and therefore, the elapsed time for each robot can be

determined:
() ()2 2

1 1

1
1

2
i i i i
j j j ji

j i i
j j

x x y y
t

V V
− −

−
−

− + −
∆ =

+
. (Ref. [17])

Now, the current values of the speed factor are given by
1

i
i
j i

jt
τλ
−

∆
=
∆

, and the current

time for each robot is defined as 1 1 1 (=0)i i i i
j j jt t t t− −= + ∆ . (Ref. [17])

Finally, the equations are inversed for the robots’ attitude to get the third control

1
1

1

 2
i i
j ji i

j ji
jt

ψ ψ
ω ω−

−
−

−
= −

∆
 and 1

1

i i
j ji

j i
j

T
t

ω ω −

−

−
=

∆
. (Ref. [17])

Once all states along the trajectories are computed, the performance index is

found. Employing the vector of weighting coefficients w (
3

1
1h

h
w

=

=∑),

()
3 1

1 2 1 3 2
1 2 3

1 0

N
i r

f f f t f f t j
r j

J w t w t t t t w F t
−

= =

= + − − ∆ + − − ∆ + ∆∑∑ and form the aggregate penalty using an

appropriate four-component vector of weighting coefficients k (
4

1

1q
q

k
=

=∑):

[]

()()
()()

() ()()

23

max
1

23

max
1

2 23

1 2 3 4 4 4 1

2 22 1 2 1 2

1,2

max 0;

max 0;

max 0; max 0;, , , , , 2 2 2 2

max 0; () () () () , * arg min(

i i
jji

i i
jji

i i
j jj ji

j j j j ij

F F

T T

D D W Wx MSD y MSDk k k k k k

MSD x t x t y t y t t

=

=

=

∗ ∗ ∗ ∗

=

−

−

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟− − + + − − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∆ = ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

− − − − =

∑

∑

∑

() ()()
() ()()

2 22 1 3 1 3

1,3

2 22 2 3 2 3

2,3

)

max 0; () () () () , * arg min()

max 0; () () () () , * arg min()

i
f

i
j j j j fij

i
j j j j fij

MSD x t x t y t y t t

MSD x t x t y t y t t

∗ ∗ ∗ ∗

=

∗ ∗ ∗ ∗

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − − − =⎢ ⎥
⎢ ⎥
⎢ ⎥− − − − =⎢ ⎥⎣ ⎦

38

 (Ref. [17]) Note that the last three terms in the compound penalty are quite tricky

because robots’ coordinates have to be interpolated so that they correspond to the same

instants of time.

Finally, a standard nonlinear constrained minimization routine is used to

minimize the performance index while keeping the penalty within the certain tolerance:

min J
ε∆≤Ξ
. (Ref. [17])

A rest to rest maneuver was simulated from an arbitrary starting position to a

close-in, triangular final position. Four frames from the bird’s eye view animation are

provided in Figure 17. Robot 1 (bottom left), Robot 2 (top center), and Robot 3 (right

center) perform the rest to rest maneuver in approximately 45 seconds. Frame (a) depicts

the starting position, frame (b) and frame (c) depict intermediate positions, and frame (d)

depicts the final position with the ground tracks to achieve that position. The front side of

each robot is indicated buy a line extending from its center. The direction and magnitude

of the rotating thruster is also indicated by the plume extending from the robots. After

defining the initial absolute position and final relative position, the algorithm varied the

final absolute position, time, and time factor step size (∆τ), initial and final jerk (the

derivative of acceleration) to achieve this final position without collision and in timely

manner. The guidance algorithm achieved these results by computing polynomials for x,

y, and ψ for each of the robots such that all positions, velocities, and accelerations met

the given boundary conditions. The control profiles were calculated from the inverse

dynamics. (Ref. [17])

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Bird's Eye View

y-axis (East) (m)

x-
ax

is
 (N

or
th

) (
m

)

time=0
0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Bird's Eye View

y-axis (East) (m)

x-
ax

is
 (N

or
th

) (
m

)

time=14.67
0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Bird's Eye View

y-axis (East) (m)

x-
ax

is
 (N

or
th

) (
m

)

time=23
0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Bird's Eye View

y-axis (m)

x-
ax

is
 (m

)

time=45

Figure 17. Example sequence at 0 (a), 15 (b), 23 (c) and 45 seconds (d) (Ref.

[17])

39

A summary of all parameters are shown as functions of the time factor τ in Figure 18.

0 5 10
0

0.5

1
λ

τ
0 5 10

0

20

40

t (
s)

τ
0 5 10

0

2

4

∆
 t

(s
)

τ

0 5 10
0

2

4

6

x
(m

)

τ
0 5 10

1

2

3

4

y
(m

)

τ
0 5 10

-2

0

2

4

ψ
 (r

ad
)

τ

0 5 10
-5

0

5

α
 +

 ψ
 (r

ad
)

τ

0 5 10
0

0.1

0.2

F
(N

/k
g)

τ
0 5 10

-0.05

0

0.05
T

(s
-2

)

τ
0 5 10

-0.5

0

0.5

δ
(ra

d/
s)

τ

0 5 10
-0.2

0

0.2

0.4

u
(m

/s
)

τ
0 5 10

-0.5

0

0.5

v
(m

/s
)

τ
0 5 10

-0.2

0

0.2

ω
 (r

ad
/s

)
τ

0 2 4
0

2

4

x-
ax

is
 (m

)

y-axis (m)
0 5 10

-5

0

5

α
 (r

ad
)

τ
Robot1
Robot2
Robot3

Figure 18. Summary of parameters for Direct Calculus of Variation method (Ref.

[17])

The next step in this implementing this algorithm would be to optimize it to point of

being able to provide real time, closed loop solutions.

40

B. ARTIFICIAL POTENTIAL FUNCTION GUIDANCE
In contrast to the Direct Calculus of Variation Method, Artificial Potential

Function Guidance (APFG) provides a quick way to calculate a control input. In

general, APFG can be implemented in various ways, including as a trajectory planner.

Conceptually, APFG is generally explained as positive and negative potential fields

which the weighted sum provides gradient to follow. This gradient hopefully ends in at

the final desired state, or global minimum of the potential function.

The algorithm developed here takes some of the ideas from APFG and facilitates

easy implementation with a PID controller. The robot using this algorithm looks for

obstacles (i.e., other robots) that could potentially be in its way to its final destination, or

in its “collision zone.” It also checks if any obstacles are too close to it, or in its “safety

zone.” If either of these two cases exists, a correction, or, avoidance vector is added to

the vector which directs the robot to its final desired destination. Figure 19 illustrates

this concept.

Collision zone

Absolute destination

Robot 2 (too close)

Robot 3 (possible obstruction)

Robot 1Temporary
steering point

Add avoidance
vectors

Safety zone

Figure 19. APFG concept

In the case that there is a robot in the collision zone, a vector tangent to the

direction of the obstacle is added to the final destination vector. This correction would

allow the robot to circle around an obstacle until the path to its desired location is clear.

In the case that there is an obstacle that is within the safety zone of the robot, a correction

vector in the opposite direction is added to the final point. The resulting steering point is

41

therefore the vector sum of up to five vectors: the unobstructed final destination; up to

two tangent vectors if there are obstacles between the robot and the final destination; and

up to two repulsive vectors, if there are obstacles too close to the robot. This

combination of vectors provides a temporary point for the PID controller to steer towards.

As the robots move and the system changes, so does the steer point. Once the path to the

final destination point is clear the robot can proceed directly to it.

APFG offers a quick solution, but suffers from being non-deterministic, and non-

optimal. There is also a problem with local minima. This case is analogous to several

corrective vectors being symmetric and actually canceling each other out, so no

corrective vector is applied and a collision could result. One way to help avoid this

situation is by weighting the vectors differently. For example, weighting a repulsive

vector by 1/d, where d is the distance between the robot and the obstacle, will give a

stronger repulsion as d decreases. Multiplying the vector by the velocity will decrease

the repulsion as the robot moves slower, as for the case with docking. Furthermore,

weighting the vector by other functions, such as dAe− where A is a constant, or user

defined gain, will give the system even different behavior.

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Bird's Eye View

y-axis (East) (m)

x-
ax

is
 (N

or
th

) (
m

)

time=99.2

Figure 20. APFG simulation output

42

A simulation was conducted using an APFG algorithm with the base

configuration described in the previous chapter. The two other robots followed the

trajectories calculated in the previous example; the primary robot was left to navigate on

its own to the absolute final position without colliding with the other robots. The

outcome can be seen above in Figure 20, and the parameters versus time are provided in

Figure 21.

0 50 100
0

1

2

3

4

5

x
(m

)

time (s)
0 50 100

0

1

2

3

4

y
(m

)

time (s)
0 50 100

-1

0

1

2

3

4

θ
(d

eg
)

time (s)

0 50 100
-0.1

0

0.1

0.2

0.3

u
(m

/s
)

time (s)
0 50 100

-0.1

-0.05

0

0.05

0.1

v
(m

/s
)

time (s)
0 50 100

-0.2

-0.1

0

0.1

0.2

ω
 (r

ad
/s

)

time (s)

0 50 100
0

0.2

0.4

0.6

0.8

1

Th
ru

st
 (N

/k
g)

time (s)
0 50 100

-200

-100

0

100

200

P
os

iti
on

 (d
eg

)

time (s)

0 20 40 60 80

0

20

40

time (s)

C
M

G
 p

os
iti

on
 o

f R
ob

ot
1 (d

eg
)

Robot1
Robot2
Robot3

Thruster1 of Robot1
Thruster2 of Robot1

Figure 21. Parameters vs. time for a APFG simulation

Code written for this APFG is included in the Appendix. Information on the

control system for this configuration is detailed in Reference [6].

43

IV. NAVIGATION

There are two main purposes of Navigation: state estimation and onboard

autonomy. State estimation is the process of evaluating all of the system data and making

the best possible estimates of positions, attitudes, and rates for all of the robots on the

floor. Generally two sets of sensors are needed for the AMPHIS testbed: onboard sensors

for each robot to determine where they themselves are, and at least one other sensor to

determine where the other robots are, such as LIDAR.

A. STATE ESTIMATION
Valid knowledge of the system state is required to effectively navigate from point

A to point B. In case of the described base configuration, the state consists of eighteen

variables: the coordinates and attitudes of all three robots, and each of their rates. The

state could be expanded to include the positions of some sensors or actuators, or

accelerations, etc. if desired. The state is estimated in two separate parts: the robot

estimates its own state, and is estimates the state of the other two robots. The system can

easily be configured to uses one of the following sensor groups to determine the state:

Robot determines its own state using:

• iGPS and the gyro

• accelerometers, gyro, and kinematics integrator

• kinematics integrator (simulation or open-loop control)

• lookup table (simulation only)

Robot determines the state of the other robots using:

• data transmitted on the wireless LAN (via UDP)

• LIDAR

• lookup table (simulation only)

The two inputs to the state estimation module are the “input_bus,” which carries all of the

data from the onboard sensors and the wireless LAN, and the “st_dr,” which stands for

44

“state determined by dead reckoning.” This is the output from the kinematics integrator.

Figure 22 is the state estimation SIMULINK model.

choose UDP or Vision for state estimation

State Estimation

2
v

1
state

input_bus

dr_1
st1

st1

input_bus

state4sim

state

v

st 2 & 3 (vision)

input_bus

st2

st3

st 2 & 3 (UDP)

[state]

[state]

2
st_dr

1
input_bus

Figure 22. State estimation SIMULINK model

The state variables that are determined by the iGPS or from the kinematics

integrator are explained it Reference [6]. The state variables estimated from the LIDAR

are discussed next.

LIDAR gives bearing and range information in a plane circling it. The next

section will discuss how pose estimations of the robots on the floor are made from

LIDAR date. Once pose estimations are made from the LIDAR data, pose estimations,

along with the estimation a robot has made of its own state, is combined to create a entire

state. The function “pe2st,” or, “pose estimation to state variable,” takes the estimated

coordinates of itself (the LIDAR is mounted in the center of the robot), along with the

relative bearings, ranges and orientations of the other robots, and creates a three by three

position matrix from it in absolute coordinates. The columns of this matrix represent

robot 1, robot 2, and robot 3, respectively. The rows represent the x coordinate, y

coordinate, and attitude angle, respectively. As can be seen from Figure 23, the

remaining state variable (the rates) are found using the derivative block and are then

45

combined to them with the vertical concatenation block. The Kalman filter will

significantly upgrade these values once employed.

choose lidar or simulated vision

2
v

1
state

UU(R,C)

my position

state

v ision

v

Sim Pose Estimation

[sim_vision]

[sim_vision]

ref

pe2

pe3

rng

brg

pos

pe2st

du/dt

2
state4sim

1
input_bus

<pe2>

<pe3>

Figure 23. State estimation from vision module

For simulation and testing, a pose estimator simulator lets the accuracy and

update rates be defined for pose estimation. Figure 24 is a model of the pose estimator

simulator.

specify accuracy here

specify sample rate here

Pose Estimation Simulation

[b_j r_j phi_j] j=2..3

2
v

1
vision

a
pe2

pe3

pos2pe

position to pose estimation

1 on/off
v ision v

Sim Lidar

v ision v

Sim Camera

UU(R,C)1
state

Figure 24. Pose estimation simulator

B. POSE ESTIMATION STRATEGIES USING ARTIFICIAL VISION
Pose estimation is the process of determining an object’s position and orientation

relative to the artificial vision sensor’s position and orientation. Several variable sets can

be used to describe this information. In general, the number of variables needed to

describe a pose is equal to the degrees of freedom of the system. There are several

46

commonly available artificial vision sensors for that can be used for pose estimation.

Pose estimation using LIDAR and digital imaging cameras are discussed here. Range (or

stereo) cameras which deliver three dimensional information and omni-directional

cameras (Bearing/Range) are two other viable sensors for this application.

1. LIDAR (Bearing/Range)
LIDAR gives bearing and range information in a single plane. Since the LIDAR

is mounted level at the top center of the robot, the plane that it measures is parallel to the

floor at an equidistant height. It has been experimentally shown that reflective surfaces

and especially the special reflective LIDAR tape can greatly improve the read. The

LIDAR starts at a designated point on the physical unit and returns ranges at every step

angle moving clockwise. For the base configuration, the first angle is at 0˚ (the flat part

of the LIDAR case) and the step angle is equal to 0.625˚. One full revolution therefore

provides 575 range measurements (Figure 25).

-8 -6 -4 -2 0 2 4 6 8

-2

0

2

4

6

8

10

1) Initial Angle
(relative to
LIDAR)

2) Step Angle (angle
between range
measurements)

3) List of Ranges
(360˚/Step Angle
- 1)

0˚ starting angle

0.625˚ between
measurements

360˚/0.625˚-1=575
measurements per
spin

LIDAR

Figure 25. LIDAR operation and basic data return

There are two problems that must be solved to use a LIDAR effectively with the

AMPHIS test bed. Firstly, other robots must be distinguished from the rest of the objects

in the room seen by the LIDAR. Secondly, the pose estimation of those robots must be

made. The first problem is somewhat artificial, since in space, there would not be any

clutter in range of the proximity operations. Therefore, it is desired to spend little

47

resources solving this problem. The easiest way to determine what points correspond to

robots and which do not is by finding the floor. If there are points on the floor, they are

assumed to be robots.

The first step to finding is to convert the bearing and range information into xL

and yL coordinates. These coordinates are relative to the LIDAR, not the floor. This

transformation is straightforward using polar to Cartesian transformations (Figure 26).

-8 -6 -4 -2 0 2 4 6 8

-2

0

2

4

6

8

10

Convert each point
to [x,y]
coordinates
(relative to
LIDAR at [0,0])

[1.5, 6.7]

LIDAR

Figure 26. Convert LIDAR data to Cartesian coordinates

Taking into account the robot’s position and attitude on the floor, a transformation

can then me made to the points from the LIDAR. If all of these points are rotated by the

opposite of its attitude angle, and then shifted in the x and y directions by the amount of

its absolute coordinates, the LIDAR data will be shifted into the absolute “floor”

coordinate system. The origin of this coordinate system is in the bottom left corner of the

floor (represented by the dotted green box) in Figure 27.

48

-8 -6 -4 -2 0 2 4 6 8

-2

0

2

4

6

8

10

LIDAR

Walls

Robot

clutter

clutter

Floor

Figure 27. Finding the floor using LIDAR

Objects are then created from the point ranges from the LIDAR. If consecutive

points are different by more than a prescribed amount, it is assumed that they belong to

different physical objects. Assigning each point to an object make it easier to process the

data. Objects that are too big, too small, or too far away can easily be discarded (Figure

28). It is important to note that there is a discontinuity at the starting point (0˚/360˚).

Therefore, those points should be considered together as a possible single object.

-6 -4 -2 0 2 4

-3

-2

-1

0

1

2

3

4

5

6

1

2

34
5

67

8

9

10

After grouping points
together to represent
“objects” and filtering out
objects that are too big,
too small, or too far away,
only the objects that
could be robots remain.
In this case, object #1
and #10 are robots. The
others are clutter to be
filtered out using
positional analysis.

Figure 28. Assigning points to objects

49

Once objects are found, numbered, and their absolute positions are known, the

objections on the floor are determined (because they are inside the square bounded by

(0,0) and (14,16) feet), their relative bearings, ranges, and orientations are found (Figure

29). The relative bearing is estimated by finding the median bearing between the extreme

ends of an object. The range is found by adding approximately six inches (half the width

of a robot) to the minimum range of the points that make up that object. Finally, the

orientation can be estimated by using linear regression on the line or lines made from the

edges of the LIDAR return.

Robot

Floor

Relative Bearing

Orientation of the Robot
on the Bearing line

Range

Pose

1) Range

2) Relative Bearing

3) Orientation of the Robot on
the Bearing Line

Determine 2 robot
edges via regression

LIDAR
Figure 29. Estimating the pose of LIDAR objects

The LIDAR’s ability to track objects was successfully tested using these

techniques. The LIDAR scanned the room, assigned each point to an object, filtered out

small objects and the transformed the points into the floor’s coordinated system. The

LIDAR processing algorithm successfully identified objects on the floor as robots, and

ignored all other robots. As an object (in this case, a person) moved about the floor, the

LIDAR could track and plot the objects position and just under 0.5 Hz (once every 2.2

seconds) on the PC104 onboard computer. Previous experiments on faster computers

that were conducted without plotting the results real-time were able to reach update rates

of over 1 HZ (less than a second per update).

2. Camera (2D Photograph)
There are several ways to determine a pose from a two dimensional image (from

camera, for instance), but only two methods will focused on here. The pose

50

determination algorithms discussed here are fairly straightforward once certain key

features, such as corners or edges, are ascertained from the photograph. But obtaining

these key features autonomously via image processing makes pose determination from a

single photo a very complicated problem. Issues that require handling include: separating

the object you wish to from the background clutter; determine if there is something

between the camera and the object (object obscuration); and determining if the photo you

are examining contains enough data to even estimate a pose (i.e. a picture does not

encompass the entire object). Image processing techniques must be developed to

mitigate these problems. Although some of these image processing techniques will be

briefly mentioned, the remainder of this section will focus on the algorithms used once

the key features have been found.

a. Using Points
The first algorithm discussed here is a general pose estimation method

using key points of a known object. Using the “key points” of an object, such as the

corners of a square of known size, the pose can be estimated by solving a non-linear

system of equations for the reverse transformation of a three dimensional scene onto a

two dimensional plane.

For the purpose of describing the pose estimation algorithm, a coordinate

system is chosen similar to the one in 9: the camera is centered at the origin of a left-

handed orthogonal coordinate system pointing down the positive z axis. Positive x is to

the left, and positive y is up. The z axis is limited to non-negative values since negative

values would indicate an object is behind the camera, out of its field of view. The next

concept to realize is that a photograph is a projection of a three dimensional scene onto a

two dimensional plane. This plane is called the focal, or interpretation plane. The

coordinate system and interpretation plane is illustrated in Figure 30.

51

Figure 30. Point pose estimation coordinate system and interpretation plane

At this point, is simpler to attempt to solve the reverse problem to pose

estimation, which is to rotate and translate an object of known shape onto the coordinate

system and determine how it would appear on the projection plane. Since the object is

assumed to be known, it can be defined arbitrarily in a similar coordinate system to that

described above. For example, a simple square with a side length equal 1 unit can be

defined so it is centered on, and lies completely on the xy plane. Each corner is then

represented by four column vectors creating the object matrix O:

.5 .5 .5 .5

.5 .5 .5 .5
0 0 0 0

O
− −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

.

A mathematical expression can represent the rotation and translation of

this action. First, the rotation matrix Rαβγ is a direction cosine matrix that will rotate an

object about the x, y, and z axes by the amounts , ,α β γ respectively. The Euler equation

for a left-handed coordinate system is

cos sin 0 cos 0 sin 1 0 0
sin cos 0 0 1 0 0 cos sin

0 0 1 sin 0 cos 0 sin cos
Rαβγ

γ γ β β
γ γ α α

β β α α

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.

Next, all of the object’s key points will be translated in the x, y and z

directions by the amounts a, b, and c respectively. This completes the positioning of the

52

object in the three dimensional coordinate system, given by the expression

1 ... 1
1 ... 1
1 ... 1

a
P R O b

c
αβγ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 where P is the position matrix of the object and the number of

columns of ones is equal to the number of points in the object.

The next step in this reverse problem solving track is to project the three

dimensional object onto a two dimensional plane. As seen above, the matrix to perform

the positioning transformation must be constructed based on how many points make up

the object, so there is not a simple formula. Since the focal plane is defined by a constant

z=focal length f, each point in 3-space is transformed to 2-space by the following

formula: 9

/
/
1

x z

y z

P P
p P P f

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. This formula enables the ability to create a “simulated”

photograph given a point in 3-space and a focal plane of distance f. Again, the simulated

photograph would be on the xy plane (the first elements of vector p).

As shown, deriving the formula for transforming points in 3-space to a 2-

space projection is straight foreword. Figure 31 illustrates this process.

Object in real space

Interpretation
Plane

Camera

Figure 31. Projection of an object in 3-space to 2-space

53

Estimating the pose of a known object from a photograph is simply the solving the above

problem in reverse. Given a the set of key object points on a photograph, solve for the

pose, or the variables , , , , ,a b cα β γ . Using symbols, as in MATLAB’s symbolic toolbox,

the position matrix P (defined above) is constructed. Each point in P (real space) has a

corresponding point in p (on the photograph). Each point therefore contributes two

equations to our system of equations (one for each of the x and y coordinates of the

photograph). From image processing, the x-y coordinates of the photograph are

extracted, and provided a solution for our system of equations. Therefore, for N key

points on a photograph, a system of 2N nonlinear equations must be solved to yield the

pose variables , , , , ,a b cα β γ . Figure 32 illustrates this reversed process.

…solve for this

(object in real space)

Now, given this…

(your photo)

Figure 32. Solving for an object in 3-space from an object in 2-space

This process was implemented in MATLAB. A square was rotated and

translated into 3-space. A simulated photograph of that object was taken on the focal

plane, shown in blue in Figure 33. Some noise, or error, was then introduced to the

points on the two dimensional photo, and MATLAB’s fsolve function was using to derive

the original rotation and translation amounts. A simulated photograph of this derived

object was taken on the focal plane, shown in dotted red in Figure 33. These functions

are included in the Appendix.

54

Blue line – simulated photo
Red dotted line – MATLAB solution

Camera

Figure 33. Pose estimation using points demonstration

There are several limitations to the using the pose estimation using points

algorithm. One is know as the Necker’s cube illusion. A hollow cube has ambiguous

poses as can be seen in Figure 34. Due to symmetry, multiple sides can appear to be the

nearest to you. Also, a symmetric object will have ambiguous pose solutions.

Figure 34. Necker’s cube illusion

Another problem that challenges this algorithm is not being able to find all

the key points on a photograph. As mentioned, the number of equations required to

determine the pose of an object depends on the number of key points in the object. If all

the key points cannot be found, a difficult process of trying to limit the object points

would ensue.

55

b. Using Edges

Image processing occurs automatically after a digital photograph is

received from the camera. The algorithm will first try to determine how many robots are

in view: zero, one, or two. If there are no robots in the field of view, a search routine will

have to be conducted. This routine is completed after initialization; once the robots are

acquired and tracking has started, the camera will alternate amongst the moving robots

and attempt to keep them in its field of view. If two robots are in the photo, it is preferred

to center the camera on one robot at a time. If this is not possible, such as the case when

one robot is behind the other, accurate pose estimates are very difficult to make.

Each photograph is processed onboard the robot to find and determine the

relative positions of the other robot(s). Figures 6a and 6b illustrate an example

photograph of one of the robot used in Ref.1 and a simulated photograph assumed to be

of Robot 3 as seen by Robot 1. The image processor locates the three vertical support

structures from the image determines the robot’s relative position from the know size and

shape of the robot(s) in the field of view.

Figure 35. Actual image taken from Robot 1

56

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Simulation Image from Robot1

Figure 36. Simulated image taken from Robot 1

The basic algorithm for determining pose is to first determine the relative

angle the robot is in the image frame. This is accomplished by finding the vertical corner

support beams of the robot. Assuming that three support beams can be seen, the

differences in the distance between the two sets of lines (i.e. the left-center, and center-

right sets of lines) will give an orientation. Using only this algorithm will result in a set of

four ambiguous solutions, so another feature of the robot will have to be known to

differentiate the ambiguity. For example, the vertical beams of robot with a square cross-

section will look the same when oriented at intervals of 0, π/2, π, and -π/2, so another

known feature will have to be exploited to de-conflict the possibilities. This analysis is

required regardless because and least one unique feature must be known of all robots so

they can differentiate between them. Once the orientation has been determined, the

distance to the robot is computed from the relative size and the focal length of the

camera. The image processing itself requires a pixel analysis of the entire image. In order

to find three vertical support beams of the robot, background clutter must first be

separated.

Figure 37 depicts the geometry involved in relating a robot of known size

(square with length a) to the projection of that image on to the focal plane. In this

situation, the camera with focal length f on Robot 1 is pointed straight ahead (up) and

Robot 3 is in the field of view on the relative left of Robot 1. The values xL, xM, and xR are

found by the image processing that locates the three vertical support beams. From these 3

values and f, the relative bearing angles to each support beam (Lβ , Mβ , Rβ) can

57

determined. Taking the relative pointing angle of the camera into account, the formula for

the relative bearing of Robot 3 from Robot 1 is

arctan(/) arctan(/)
2

R L
camera

f x f x
β α

+
= +

The orientation of Robot 3 on this bearing is described by η , which is

found by solving the transcendental equation

cos sin
2

cos sin
4 4

M L M

L R

M

f
x x x

f x x
x

η η

π πη η

+
−

=
−⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

Finally the range from Robot 1 to Robot 3 is determined. Since the camera

will be mounted in the center of the robot, the range determined from the geometry in

Figure 37 can be used. The equation used to determine the range is

13sin tan
4

2 sin
2

L

L R

f
x

R a

π η

β β

−⎛ ⎞
+ +⎜ ⎟

⎝ ⎠=
+⎛ ⎞

⎜ ⎟
⎝ ⎠

Robot 1

Robot 3

Rβ

Lβ

Mβ

f
RxMxLx

η

a

cosa η

Rβ

Mβ

1tanR
R

f
x

β −=

1tanM
M

f
x

β −=

1tanL
L

f
x

β −=

sin Ma tgη β

2 cos
4

a πη⎛ ⎞+⎜ ⎟
⎝ ⎠

2 sin
4 Ma tgπη β⎛ ⎞+⎜ ⎟

⎝ ⎠

cos sin

2 cos 2 sin
4 4

M L M

L R
M

a a tg x x
x xa a tg

η η β
π πη η β

+ −
=

−⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

cos sin
2

cos sin
4 4

M L M

L R

M

f
x x x

f x x
x

η η

π πη η

+
−

=
−⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

Relative orientation of Robot 3 with respect to Robot 1 is
defined by angle η (to be found from the above
transcendental equation).

58

Robot 1

Robot 3

Lβ

4
πη +

2a

1

2
2

sinsin tan 24 2
L R

R
L

a
R

f
x

β βπ π βη −

=
−⎛ ⎞ ⎛ ⎞++ + − ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

Once angle η is found, the range to the center of Robot 3
from Robot 1 can be defined as follows

2 L
π β−

2
L R

R
β ββ −

+

R

13sin tan
4

2 sin
2

L

L R

f
x

R a

π η

β β

−⎛ ⎞
+ +⎜ ⎟

⎝ ⎠=
+⎛ ⎞

⎜ ⎟
⎝ ⎠

Figure 37. Pose estimation geometry for the leg supports

The Hough transform is a method for determining the equation for lines in

a flat image. The MATLAB vision processing toolbox automates this process

significantly with the hough(image) function. An example of how to use this function is

depicted in Figure 38.

59

Figure 38. Hough transform example

The hough() function returns a matrix of values; the high values represent

an index to a θ and ρ which can be used to define the equation of a line parametrically.

C. ONBOARD AUTONOMY
The navigation software also provides another function: onboard autonomy. The

work completed here is meant to serve as a starting point, or platform, to develop robust

guidance and control algorithms. Cooperative spacecraft conducting proximity

operations will most likely need to operate autonomously in several different modes, such

as when they are kilometers apart, meters apart, or centimeters apart. They would also

benefit from being able to send each other messages, such as equipment status, or

intentions. The navigation system will act as the brain controlling these functions; it is

the ideal place to do it, as it will also be estimating the system state.

The navigation system is based around a finite state machine. It will consider the

current state (from state estimation), the desired end state (from the user definition), any

messages from the other robots (via the wireless LAN) and the finite state machine state

variable to determine what the guidance mode should be, how the vision sensor may need

to be controlled, and may also communicate any knowledge with the other two robots

(via the wireless LAN). The navigation module is in Figure 39.

60

Navigation

3
vcmd

2
xlink_out

1
gcmd

State Variable

user

state

xlink_in

sv 1

gcmd

v cmd

xlink_out

sv 2

fsm

Finite State Machine

3
state

2
xlink_in

1
user

Figure 39. Onboard Autonomy SIMULINK model

An example finite state machine was developed as an initial step for robust

navigation. This finite state machine commands the guidance system to not move (stay

in position) until all of the robots have communicated that they are “ready” to invoke

collaborative maneuvering (Figure 40). It is important to remember that this software is

to run on all three robots; but in this case, states are named by their absolute names

(Robot 1, Robot 2, and Robot 3), and not their relative names. This convention will limit

which of the finite states each robot can go into.

00

11

22

33

12312323

1212

13

Each arrow represents a transition when a robot is “ready”

Figure 40. Example finite state machine of the onboard autonomy system

This diagram may be easier to understand in words. The transitions are explained

assuming the perspective of Robot 1. Starting in State 0, all initialization routines are

started. As each robot completes its initialization routine, it will send a message to the

other machines and transition to the next state. In the case of Robot 1, the next state

would be State 1, meaning Robot 1 is ready. Likewise, when the other robots received

61

the message that Robot 1 was ready, they would transition to State 1 as well. If Robot 2

was the next to finish initializing, the robots would all similarly transition to State 12,

meaning Robots 1 and 2 are both ready. Finally, when Robot 3 sends its ready message

to the other robots, the State 123 would be transitioned to and that represent all robots are

ready to maneuver. Up to this point, the guidance modes on all robots would be

commanded not to move the robots.

Other states can be added to this base finite state machine and robustness can be

added with the addition of other messages, such as error messages, or the lack of

messages, such as a lost communications scenario.

D. LIDAR
Paramount to the success of the AMPHIS experiment is the accurate

determination of the system state. In order to enable autonomous operation of a multiple

craft system, each craft needs a sensor to reliably access the positions, and to a lesser

extent, the pose, of the other craft in the system. A LIDAR sensor was selected to be

implemented first on AMPHIS because of it directly provides the two most critical

parameters for the system state: bearing and range. It provides a good sample rate, and

also requires less processing time than a photograph image. This chapter focuses on the

actual hardware implementation of the SICK LD-OEM LIDAR. In contrast to modeling

and simulation, this crucial part of the experimental setup has different types of problems

that require the physical implementation, configuration, and operation of actual hardware.

1. SICK LD-OEM LIDAR
The SICK LIDAR uses a class 1 (eye safe) laser. Its primary capabilities and

attributes are located in Table 4.

Connection types RS232, CAN, ARCnet

Ranges 24 m (5% reflection)

50 m (20% reflection)

100 m (90% reflection)

250 m (with reflectors)

62

Size 10”x6”x5”

Weight 3.2 kg

Useful scanning angle 360˚

Operating Voltage 24V ± 20%

Power consumption 36W

Scanning Frequency 5 to 20Hz

Angular resolution 0.125˚

Max pulse frequency 14.4 kHz

Serial Data port baud rates 4800 to 115200 Bd

Table 4. SICK LIDAR OEM Product Information

2. LIDAR Setup
The SICK LIDAR requires two physical connections to operate: a power cable,

and a control link cable. The power source must provide 19.2 to 28.8 V at 36 W. Having

the correct power supply is crucial for reliable information. It is recommended from the

vendor that a supply is used that is rated at twice the required 1.5A. For testing, a HP

6542A DC power supply rated at 0-20 V, 0-10 A was used to prevent the unnecessary

recharging of the onboard battery, but the LIDAR is easily reconfigured between the two.

For the control link, a RS-232 serial cable was connected to the COM port of a Windows

XP Pentium III computer. The SICK LIDAR has a sample application to test and

demonstrate the capabilities of the unit. Some example test runs are included here with

illustrative screen shots to better depict the LIDAR capability.

3. LIDAR Control
The first step to controlling the SICK LIDAR was to communicate with it.

MATLAB was selected for configuration setup and testing because of its simple, flexible,

interface and integrated processing functions.

There are four basic functions that must be performed to operate the LIDAR via a

COM port: a serial port connection must be opened and closed with the scanner, and data

must be read from, and written to the scanner. The built in commands that directly

63

correlate to these functions in MATLAB are fopen(), fclose(), fread(), and fwrite(). Two

other MATLAB functions, serial() and delete(), are used to identify the port to be opened,

and delete the port when finished, respectively.

Although the use of the tools to communicate with the SICK LD-OEM LIDAR

are straight forward, the composition and encapsulation of command data and subsequent

decomposition, parsing, and interpretation of status/profile data are not. Although

sending and receiving data to and from the scanner are similar, each is addressed

separately to avoid confusion. But first, it is important to state that the data passed with

fread() and fwrite() are always in bytes, or unsigned 8-bit integers (0-255, or 0x00-0xFF)

represented in MATLAB by double precision floating point numbers. Depending on

their position in the data stream, these integers may be converted to ASCII characters,

hexadecimal values, or two bytes are combined to form 16-bit decimal values.

-8 -6 -4 -2 0 2 4 6 8

-2

0

2

4

6

8

10

LIDAR

Walls

Robot

clutter

clutter

Floor

Figure 41. Illustrated output of the LIDAR

All data passed to the SICK LD-OEM LIDAR must be properly formatted into a

“packet.” A beginning of a packet is identified by the number 2, and the end of a packet

is identified by the number 3. The bulk of the packet is composed of two parts: the

command data (CD) and the Cyclic Redundancy Code (CRC). The order of significance

of each packet sent is left to right: the leftmost number is sent first, the rightmost number

64

is sent last. Therefore, each packet sent to the scanner has the vector form [2 CD CRC

3], where CD is a 1xN vector (N can have several values based on the number of

parameters of the command being sent), and CRC is a 1x4 vector. Although the length of

CD can vary with that command being sent, all commands for the SICK LD-OEM

LIDAR can fit into a single packet. The format of CD and CRC are discussed next, in

order.

Command Data (CD) is the code sent to the scanner to control it. CD originates

as a string of characters representing a hexadecimal code. It is important to stress that it

is a string because each character in the string is converted to the ASCII value for that

character before it is sent to the scanner. For example, the sub-string ‘0A’ is not

represented by the array [0 10], but by the array [48 65] (ascii(‘0’) =48, ascii(‘A’)=65).

The command to convert a character string to an ASCII array in MATLAB is

double(‘String’) (which returns [83 116 114 105 110 103] for example). One

major advantage of using this schema is that the command data streams sent and received

by the scanner are limited to 16 integers, 48-57 and 65-60 (‘0’-‘9’ and ‘A’-‘F’). These

values make it easy keep packet header information (2 and 3) distinct from command

data.

An example to illustrate the format for the packet/data structure is depicted in

Figure 42. Note that the numbers shown in quotes are the strings that would be converted

into an array of ASCII values as described above.

STX SID DID LEN SEP CMD PARM CRC ETX

2 '00' '10' '0004' '0000' '0403' '0000' 'A3E3' 3
Figure 42. SICK OEM LIDAR Protocol stack

Portion Meaning Note

STX Start of a packet Always = 2

SID Source identifier ‘00’ is the computer ID

DID Destination identifier ‘10’ is the scanner ID

65

LEN Number words remaining in the

structure

In this case 4 represents one word each

for SEP, CMD, PARM, and CRC

SEP Separator – start of the command Always ‘0000’

CMD Command code A list of primary commands follow

PARM Parameters for the command Number of parameters vary with

command

CRC Cyclic Redundancy Code Calculated from all parts of the packet

except STX, ETX, and CRC

ETX End of a packet Always = 3

Table 5. SICK OEM LIDAR Protocol Meaning

This example is the command to start the LIDAR spinning.

The Cyclic Redundancy Code (CRC) is a bit hash of the CD to ensure that it is

genuine and was not received in error. The CRC is a 16-bit hexadecimal number that is

calculated from the CD. It also must be converted to an ASCII array before it is sent to

the scanner. Since the CRC is always 16-bits, the ASCII array that represents it is always

four numbers in length. The CRC signature is calculated using the generator polynomial

x16 + x12 + x5 + 1 as recommended by the ITU.T V.42 (former CCITT). A MATLAB

implementation of the CRC calculator was written based on a C++ algorithm that came

with the SICK LD-OEM LIDAR (Ref. [13]).

Every command sent to the scanner prompts a return of data from the scanner.

For many commands, this returned data is simply a status of the command sent (success

or failure). In these cases, the returned data can fit into a single packet, but the data

length of a profile normally requires several packets to encompass the entire data stream.

For this reason, synchronization between the scanner and the code controlling the scanner

is essential. When scanner needs to send data through the serial port, it temporarily

stores that data in a buffer on the buffer. When the fread() command gets the data from

the buffer, the buffer is cleared to make room for more data. Profiles that are too large to

fit in the buffer must be emptied promptly before new data overwrites the buffer.

66

To keep the scanner synchronized, MATLAB scripts or functions were written for

every command utilized for the SICK LD-OEM LIDAR. Each command sent is

immediately followed by a read command to check the status of the command sent and to

keep the buffer clear. These read commands are completed sequentially, in serial, so

program execution is held until either the read command is successful, or a scanner time-

out error indicated that he scanner is not responding. Although it desired to be able to

read data from the scanner in parallel with program execution, synchronization problems

become too difficult to overcome. This problem exists because the scanner’s internal

buffer size is only 512 bytes. As data is written to the buffer, it must be read and cleared

before the buffer is full. If the buffer is not cleared in time, the scanner will overwrite the

buffer, and corrupt the results.

A read command is successful if it returns a packet (a data stream that starts with

the number 2 and ends with the number 3). The packet must then be parsed to determine

its meaning. The format for the packet/data structure is similar to that of the one depicted

in Figure 42, with the following notes:

• The SID and DID will be swapped to indicate the dataflow in receiving
data is opposite than sending data.

• The SEP field will normally contain ‘0000’ to indicate a successful
command competition, and ‘FFFF’ to indicate a command failure.

• The returned command code will be the same as the sent command code
except the leftmost bit will be a 1 vice a 0 (in hexadecimal, the leftmost
byte will be ‘8’ instead of ‘0’).

• All parameters values are returned.

If the packets being received are the result of a GET_PROFILE command,

profile information is returned in multiple packets, with each packet containing a segment

of the profile in the command fields of the packet structure (SEP, CMD, and PARM).

These multiple segments must be gathered sequentially and then assembled to be

processed. Figure 43 illustrates a profile that came in five segments (and therefore five

packets). The first packet contains the ‘FFFF’ identifier to indicate the beginning of a

profile. The next word indicates the number of segments that the profile will be divided

into, and the rest of the data in the command fields contain the information asked for in

the user specified profile definition. As each of the following segments are extracted

67

from the packet command fields, the first value indicates the segment number (which

count down to 1) followed by more profile data. Since the profile indicator and segment

numbers do not contain profile data, they are removed once they are checked for

consistency. The profile data in all the segments are concatenated to be further

examined.
STX SID DID LEN SEP SEG PRO ---- CRC ETX

2 '10' '00' '0126' 'FFFF' '0005' #### #### #### 3

STX SID DID LEN SEG PRO ---- CRC ETX
2 '10' '00' '0126' '0004' #### #### #### 3

STX SID DID LEN SEG PRO ---- CRC ETX
2 '10' '00' '0126' '0003' #### #### #### 3

STX SID DID LEN SEG PRO ---- CRC ETX
2 '10' '00' '0126' '0002' #### #### #### 3

STX SID DID LEN SEG PRO ---- CRC ETX
2 '10' '00' '0056' '0001' #### #### #### 3
Figure 43. SICK OEM LIDAR Protocol for Profile data

Finally, the profile data must be processed to be used. The first three words in a

profile are standard: LD response, PROFILEFORMAT, and PROFILEINFO.

PROFILEFORMAT should be the same value as set in the GET_PROFILE command. It

is a bit pattern that indicates how to interpret the following information. The code ‘01B0’

will be used normally because it returns the most data in the least amount space. The

first six words give the number of points per sector, the starting direction for the sector,

and the angle step for the sector, for each of two sectors. For scanner design reasons, at

least two sectors must be specified even if only one sector contains points. In the case

where PROFILEFORMAT = ‘01B0’, the first sector has zero points and is ignored. The

second sector therefore starts at 0˚, has an angle step of 0.625˚, and 575 points to give full

360˚ coverage. The following is an example of a GET_PROFILE command.

SEND: 00 10 0005 0000 0301 0001 01B0 13DD

Meaning: SID DID LEN SEP CMD NUM INFO CRC

68

The CMD is the code that represents a GET_PROFILE command. The

parameters shown specify to get only one profile (NUM) in the format specified by

‘01B0’ (INFO).

LD response 8301

The response from the scanner, ‘8301’, is in response to ‘0301’ as described

above.

PROFILEFORMAT 01b0

The PROFILEFORMAT is in the desired format.

PROFILEINFO 01 02

The first byte is aways ‘01’. The second byte means there are two sectors. The

SEC1: Angle step 0.625 deg

SEC1: Number of points of sector 0

SEC1: Start direction of 359.375 deg

SEC2: Angle step 0.625 deg

SEC2: Number of points of sector 575

SEC2: Start direction of 0.000 deg

 All code developed to control the LIDAR is included in the Appendix.

69

V. ON ORBIT APPLICATIONS

A. ON-ORBIT COMPARISONS (HILL’S EQUATIONS / CLOHESSY-
WILTSHIRE EQUATIONS)
Only three degrees of freedom (DOF) are considered instead of 6 DOF that a

rigid-body spacecraft would have. In fact, the robots are considered to move along a

leveled surface. This simplification limits comparisons of these ground based

experiments to operations on orbit to cases where motion between craft is in the same

orbit plane, and each craft can maintain its orientation constant relative to the orbit plane.

This limitation is acceptable and in line with most current concept of operations for

orbital rendezvous; the Space Shuttle, for example, completes all rendezvous maneuvers

with the International Space Station in a single orbit plane. (Ref [12]) The other major

simplifications are the weightless environment of orbit flight, which is impossible to

recreate in three dimensions in a laboratory environment. However, the special friction-

free floor approximates weightlessness in translational movement, and computer

simulation of Hill’s equations, or other model, can be implemented to approximate

differences between ground and on-orbit operations. (Ref [10]). In other words,

application of the AMPHIS 3 DOF simulator to test and evaluate 6 DOF systems

presupposes that the spacecraft can sense, control, and maintain its pitch, roll, and out-of-

plane distance. Assuming that these three degrees of freedom and controlled to be

constant, the remaining three degrees of freedom can be simulated on the AMPHIS test

bed. Of these remaining three degrees of freedom, the rotation about the vertical axis is

decoupled from the other two (translation in the orbit plane), and the dynamics of the

translation in the orbit plane can be expressed easily using Hill’s equations (also known

as the Clohessy-Wiltshire (CW) equations). The following discussion, however, will not

be limited to in-plane motion.

Hill’s equations describe the relative movement of a “deputy” satellite to a “chief”

satellite, or hypothetical mass in orbit, in three dimensions. A set of equations can be

derived if some simple assumptions are made (Ref. [11]):

70

• The chief is in a circular orbit with radius a.

• The deputy is relatively close to the chief (ρ<<a).

• There are no perturbations.

With these assumptions, the position of the deputy can be approximated by the

following equations:

0 0 0 0 0(2 / 3)cos (/)sin 4 2 /x v n x u n x v nψ ψ= − + + + +

0 0 0 0 0 0 0(2 /) (4 / 6)sin 2 / cos (6 3 /)y y u n v n x u n x v nψ ψ ψ= − + + + − +

0 0cos (/)sinz z w nψ ψ= +

These equations express the position of the deputy in the RSW coordinate system. This

three-dimensional, orthogonal coordinate system is defined with the origin at the position

of the chief, the R axis points directly away from the center of the earth, the S axis points

in the direction of the instantaneous velocity of the chief, and the W axis completes the

right hand rule. Therefore, the in-plane translation is represented by x and y, and the out-

of-plane position is represented by z (Ref [10]).

The time rate of change of the true anomaly, 3n
a
µ⊕= and ()n timeψ = .

The velocity terms ([, ,] [, ,]T Tx y z u v w=& & &) are found by taking the derivatives of

the position terms:

0 0 0(2 3)sin cosu v nx uψ ψ= + +

0 0 0 0 0(4 6)cos 2 sin 6 3v v nx u nx vψ ψ= + − − −

0 0sin cosw nz wψ ψ= − +

Notice that the z component (out-of-the-orbit plane) is completely decoupled from

the others (in-the-orbit plane), and all the equations are functions only of time, the orbital

radius, and the initial conditions. For this reason, a real-time simulator was implemented

rather easily in MATLAB. Figure 44 illustrates the reference frame.

71

-40 -30 -20 -10 0 10 20 30 40
-30

-20

-10

0

10

20

30

11.9 min

v e = - 0 . 0 2 m / s

u i = - 0 . 0 1 m / s

v i = - 0 . 0 2 m / s

t i = 2 6 . 8 m i n

x = 1 0 . 0 5 m

y = 1 0 . 0 0 m

u = 0 . 0 0 m / s
v = - 0 . 0 0 m / s

y-axis (m)

IN
 P

LA
N

E
 x

-a
xi

s
(m

)

CW Real Time Interactive Simulator

T i m e : 1 2 : 2 8 : 5 0

|∆V | = 0 . 1 0 m / s
a = 7 0 0 0 k m , e = 0

Figure 44. CW Reference frame

The following bullets describe the figures used in this section.

• Center (green axis) = The chief (reference spot)

• The heavy line is the velocity vector

• The green dotted line points to the earth

• The blue star is the center of the earth (seen in the y-z plane, Figure 51)

• Up direction = positive x axis (in-plane, altitude) opposite the radius

vector

• Right = positive y axis (in-plane, in-track) parallel to the chief velocity

vector

• Into the paper = positive z axis (out of plane, off track)

• Cyan square = position of the deputy

• Yellow dotted line = predicted motion based on current velocity

• The distance from the deputy to the chief is defined as ρ

72

There are five different views available in the simulator:

• XY plane (in-plane motion)

• YZ plane (out-of-plane motion)

• 3-D stationary

• 3-D rotating (with respect to the earth)

• 3-D rotating and translated

A real-time simulator can be beneficial over a complicated model. A SIMULINK

model that calculates multiple perturbations and integrates over a variable time slice can

take much longer than real time, and you cannot interact with it. A real-time simulator

can calculate positions based solely by the system clock and Hill’s equations. If you can

live without the accuracy, a real-time simulator can be very illustrative of on orbit

proximity operations.

1. Real-time Simulator Basics
The CW Real Time Interactive Simulator (CWRTIS) developed for thesis

research was motivated by NASA’s Rendezvous Proximity Operations Program (RPOP).

The crew of the Space Shuttle uses this software on a laptop (Payload General Support

Computer (PGSC)) to dock with the International Space Station. Figure 45 is a screen

shot from the RPOP program. On-orbit proximity operations can be counter-intuitive

considering relative motion of two objects in slightly different orbits. Since RPOP was

employed several years ago, crew performance in accurately and safely docking the

Shuttle to the ISS has significantly increased (Ref. [12]).

CWRTIS assumes that the deputy does not use continuous thrust, as the Space

Shuttle does not. Instead, it approximates thrusts to be infinitely short and produce a

perfectly described change in velocity (∆V). This is a good approximation considering

the fidelity of the model. The amount of thrust to be applied can be changed and ranges

from 0.01 m/s and up. The numeric keypad controls the direction of the thrust in terms of

the x-y axis, or the reference frame described in Figure 44. The keys 8, 4, 6, and 2 are

intuitively placed and represent a ∆V in the up, left, right, and down direction

respectively. The diagonal keys (7, 9, 1, and 2) include a ∆V in two directions (also

73

intuitively placed). The 0 key is set to stop all relative motion (or, create an equal ∆V in

the direction opposite of the current velocity). The 5 key will boost the current velocity

by a factor of ∆V. In thrusting with the keypad, the deputy’s motion and velocity are

changed.

Figure 45. Screen shot from NASA’s RPOP (Ref. [12])

The yellow-dotted line in Figure 44 predicts the motion of the deputy if no

additional thrusts are made. The length of this predictor can be interactively changed.

The default length is one orbit period. Figure 46 shows the predicted motion of the

deputy for approximately two orbits.

74

-1000 -500 0 500 1000

-600

-400

-200

0

200

400

600

277.8 min

v e = - 0 . 0 3 m / s

u i = - 0 . 0 1 m / s

v i = - 0 . 0 2 m / s

t i = 2 6 . 8 m i n

x = 1 2 . 0 2 m

y = 9 . 9 5 m

u = 0 . 1 0 m / s
v = - 0 . 0 0 m / s

y-axis (m)

IN
 P

LA
N

E
 x

-a
xi

s
(m

)

CW Real Time Interactive Simulator

T i m e : 1 2 : 2 9 : 5 3

|∆V | = 0 . 1 0 m / s
a = 7 0 0 0 k m , e = 0

Figure 46. Predicted motion for 2-3 orbits

2. Interception Problem
Vallado derives the intercept equations based on the Hill’s equations (Ref [10]).

Given a “time to intercept” the following equations provide the initial velocity required to

intercept the chief at the prescribed time.

0 0 0
0 2

(6 (sin))) sin 2 (4 3cos)(1 cos)
(4sin 3)sin 4(1 cos)

x y n nxv ψ ψ ψ ψ ψ
ψ ψ ψ ψ

− − − − −
=

− + −

0 0
0

(4 3cos) 2 (1 cos)
sin

nx vu ψ ψ
ψ

− + −
= −

0 0 cotw z n ψ= −

Once derived, these equations are rather straight forward. Notice again the

decoupling of the out-of plane motion. Implementing these equations in CWRTIS

validates the equations. Arbitrarily, if the time to intercept (in seconds) is set as the

distance from the chief to the deputy (ρ in meters), the closure rate that results is about 1

m/s. Figure 47 depicts the predicted motion of the deputy to rendezvous with the chief

after the velocity was set using the intercept equations (employed by pressing the period

key).

75

-100
0

100 -100
0

100

-150

-100

-50

0

50

100

150

x-axis (m)

7 4 . 7 m i n

CW Real Time Interactive Simulator

y-axis (m)

z-
ax

is
 (m

)

Figure 47. Rendezvous trajectory

Notice that the trajectory does not necessarily have to be in-plane motion. Interesting to

note, the magnitude of the velocity to intercept has a non-intuitive relation to the time to

intercept: increasing the time to intercept does not necessarily decrease the magnitude of

the velocity required. This simulator actually chooses a time to intercept using the

minimum velocity required to intercept as determined by the MATLAB function

fminsearch. This time and velocity appears in yellow at the bottom right hand corner

of views 1 and 2.

3. Relative Motion Obits
Alfriend demonstrates that by selectively choosing the in track velocity, the

relative motion orbit can be a stationary 2x1 ellipse (Ref. [11]). If 2v nx= − , the

relationship between x and y become constant: 2 2 / 4x y const+ = , which is an ellipse.

The size and location of the ellipse is based on the other variables (z,u,w,n). Figure 48

depicts the relative orbit of the deputy about the chief.

76

-200
-100

0
100 200 -200 -100

0
100

200

-200

-100

0

100

200

XECI-axis (m)

9 7 . 2 m i n

CW Real Time Interactive Simulator

YECI-axis (m)

Z EC
I-a

xi
s

(m
)

Figure 48. Elliptical Relative Orbit

Interestingly, the size and orientation of the ellipse can be changed by thrusting in the x

and z directions. Thrusting in the v direction will disrupt the aforementioned relationship

and therefore the stationary ellipse. Alfriend further derives Hill’s equations in terms of

the orbital elements so these relative motion orbits can be more easily implemented to

real orbits (Ref. [11]). Theoretically these orbits can be maintained with little fuel;

however some elliptical relational orbits are too sensitive to perturbations to be practical.

Again, this simulation ignores perturbations, so that that analysis is not accomplished

here.

Also described by Alfriend are circular orbits relative to orbit plane and projected

on the YZ plane. These orbits are examined by looking at the general solutions to Hill’s

equations listed in Vallado (in slightly different notation) (Ref. [10], [11]):

0sin()cx x C nt ψ− = + ,
0 02 cos()c cy y y t C nt ψ− = + +& , 0sin()z D nt ϕ= +

77

The constants C and D are expressed as:

2 2
0 0

0
23 v uC x
n n

⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

,
2

20
0

wD z
n

⎛ ⎞= +⎜ ⎟
⎝ ⎠

The center point about which the relative orbit centers upon is denoted as (xc, yc,

zc). It is possible that the y term actually moves. The relationships of this center point

are derived in Vallado (Ref. [10]):

0
0

2 24
3

c
c

v yx x
n n

−
= + =

&

0

0
0

2
c

uy y
n

= −

0 06 3cy nx v= − −&

0cz z= , 0 0ϕ ψ=

Choosing a center point of (0,0,0) and 0cy =& , the following initial conditions

(0 0t = , 0 0ψ =) are found:

0 0x =

0 2y C=

0 0z =

0
0 2

nyu nC= =

0 02 0v nx= − =

2 2
0 0w n D z= −

Choosing 3D C= provides the following relationship:

2 2 2 2 2 2 2 2 2 2sin 4 cos 3 sin 4x y z const C C C C+ + = = + + =

78

This represents a circular orbit on a sphere centered at (0,0,0). The size of the

circle is specified by choosing C accordingly (Figure 49).

-20 -10 0 10 20
-20

0

20
-20

-15

-10

-5

0

5

10

15

20

x-axis (m)

9 7 . 2 m i n

y-axis (m)

CW Real Time Interactive Simulator

z-
ax

is
 (m

)

Figure 49. Circular Orbit on a Sphere centered at (0,0,0)

Choosing 2D C= provides the following relationship:

2 2 2 2 2 2 24 cos 4 sin 4y z const C C C+ = = + =

This represents a circular orbit as projected on the YZ plane. Again, the size of the circle

is specified by choosing C accordingly.

By changing the initial phase angle for the z term only (0 0ψ ϕ≠), it is also

possible to select initial conditions that achieve a circular orbit projected onto the XZ

plane as well. The XY plane, however, are coupled and will always have a 2x1

relationship for elliptical relative orbits.

79

-30 -20 -10 0 10 20 30

-20

-15

-10

-5

0

5

10

15

20

9 7 . 2 m i n

v e = - 0 . 0 0 m / s

w i = - 0 . 0 0 m / s

v i = 0 . 0 0 m / s

t i = 1 0 2 . 2 m i n

z = 0 . 0 7 m

y = 1 2 . 0 0 m

w = 0 . 0 1 m / s
v = - 0 . 0 0 m / s

y-axis (m)

O
U

T
O

F
P

LA
N

E
 z

-a
xi

s
(m

)

CW Real Time Interactive Simulator

T i m e : 1 3 : 1 1 : 4 3

|∆V | = 0 . 1 0 m / s
a = 7 0 0 0 k m , e = 0

Figure 50. Circular Orbit Projected onto the YZ plane

Finally, consider a case were the center-point of the orbit is not at (0,0,0).

Choosing a center-point of (1,1,1) creates a y-drift term: 0cy <& . Looking at the

trajectory of the relative orbit in the ECI frame illustrates that the motion is not elliptical.

To magnify the effect, an impractical orbit of 70 km is chosen. This goes against the

assumptions made for Hill’s equations to be accurate, a>>ρ, but it is an illustration of

what is happening mathematically. On a more realistic scale, these effects would appear

much smaller; however, they will still be there. Since this orbit is not truly elliptical, it

cannot be employed without the use of using corrective thrusts. Figure 52 illustrates the

features implemented in CWRTIS.

80

-50

0

50 -50

0

50

-50

0

50

XECI-axis (m)

CW Real Time Interactive Simulator

YECI-axis (m)

Z EC
I-a

xi
s

(m
)

Figure 51. Relative Motion in the ECI frame (a=70km, 0cy <&)

number pad: 1-9 activate in-plane thrust
+/- +/- out-of-plane thrust
0 stop relative motion
shift-[/] +/- ∆V amount
shift-1/2/3/4/5 display mode
p on/off predictor
[/] +/- predictor length
c on/off center mark
* orbit in ellipse
. intercept
</> +/- zoom
, auto-zoom
? help screen
q quit

∆V used thus far 0.22 m /s

Help Screen

CW Real Time Interactive Simulator

Figure 52. CWRTIS Help Screen

81

4. Applying Hill’s Equations to the AMPHIS Test Bed

Applying Hill’s equations to the AMPHIS test bed can be accomplished easily in

simulation, but would not be practical in hardware. Using only the basic Hill’s equations,

the plant dynamics could be changed to simulate relative motion behavior. (Ref. [10])

Change from: To:

xfx =&& xyfx x
232 ωω ++= &&&

yfy =&& xfy y &&& ω2−=

Thrusts are denoted by f. The orbital angular rate, ω , is a constant which depends on

orbital altitude and the mass of the earth. These equations express the relative

accelerations from the (0,0) position of the floor, but could be modified to be centered

about any part of the floor. All code for the CWRTS is included in the Appendix.

82

THIS PAGE INTENTIONALLY LEFT BLANK

83

VI. CONCLUSIONS

A. SUMMARY
This research covers several topics within the SRL’s development of AMPHIS:

Autonomous, Multi-Agent, Physically Interacting Spacecraft simulator test bed. The

software architecture has been developed. A major portion of the software needed to run

onboard the simulator robots was developed in the MATLAB/SIMULINK environment.

This software can serve as a simulator, or it can be easily configured to run on multiple

platforms. Furthermore, it is modularized to facilitate easy plug-and-play testing of

newer algorithms, and can simulate any portion of a scenario instead of using hardware.

This design enables hardware in-the-loop testing.

Several types of GNC algorithms were developed to test and validate the

software. First, a trajectory planning algorithm that used the Direct Calculus of

Variation Algorithm was developed using a single camera, single thruster configuration.

Second, an Artificial Potential Function Guidance was developed to evaluate a

dynamically updating algorithm. The bulk of the software was also validated during

hardware tests.

The usefulness of LIDAR was explored in the course of this thesis. This research

included the control of the LIDAR; the parsing and decoding of the data retrieved from

the LIDAR; transforming LIDAR data into an absolute coordinate frame to help

determine robots from other object in the room; and obtaining pose estimation

information from the LIDAR data.

 Onboard autonomy was examined with the development of an initial finite state

machine. The concepts mentioned for the simple, studied case can be expanded to

accommodate more robust systems. Several pose estimation strategies were also

developed using digital imagery cameras. Finally, on-orbit application of a 3-DOF

simulator in a 6-DOF environment was studied through the development of a real time,

relative motion simulator.

84

B. FUTURE WORK

This research concludes as other research can begin. The following is a list of

further research topics that could accelerate the success of the AMPHIS testbed.

• Make the hardware setup more robust and more reliable. More research in

this area could facilitate better results throughout the rest of the system.

• Replicate the prototype robot two more times so interactive testing can

begin.

• Improve the iGPS setup. The iGPS works well with its own software,

however, this software does not integrate well with other things. To get

real time iGPS updates, a better configuration that may involve directly

decoding the iGPS receiver signal would improve the overall system

setup.

• Add more states to the finite state machine in the onboard autonomy.

Once there are several robots that can interact, it would be advantageous

for multiple guidance algorithms to change autonomously, based on the

current state. For example, the robot could go automatically from a

positioning phase to a docking phase.

• Develop a better state estimator. The current state estimator is

deterministic; it could be greatly improved with a Kalman filter. A way to

easily enable/disable sensors for different scenarios would also be helpful.

• Port the software to LINUX/RT. Real time LINUX could most probably

provide all the function needed for the robot on one CPU. Although this

solution would be more elegant, is would displace the ease of modification

that MATLAB provides.

• Develop better algorithms. Once the aforementioned improvements are

made to the testbed, it can operate as it was intended to: to perfect GNC

algorithms!

85

APPENDIX: MATLAB CODE

This table contains an index to the code presented in the Appendix. For future work on

the AMPHIS project, these files can be found in the SRL shared directory under

“\\Special.ern.nps.edu\srl$\BlakeEikenberry\Thesis Code.”

1) Pose Estimation from Points Code

• testbed.m

• makexfrom.m

• poseest.m

• poseesttest.m

• posexform.m

• simphoto.m

• plotobj.m

2) Direct Calculus of Variation Method Code

• computetraj.m

• draw_traj.m

3) AMPHIS xPC Target Artificial Potential Function Guidance Code

• apfg.m

4) AMPHIS xPC Target Initialization Code

• global_props.m

• initialize.m

• pe2st.m

• portConfig.m

• THRUSTSIMINIT.m

86

5) AMPHIS Animation Code

• anim_floor.m

• draw_dev.m

• draw_floor.m

• draw_foto.m

• draw_robot.m

6) AMPHIS Windows XP Related Code

• closeport.m

• hex2decword.m

• LidarBaud.m

• LidarCRC.m

• LidarGetprofile.m

• LidarIdlem

• LidarInit.m

• LidarMeasure.m

• LidarMeasureStop.m

• LidarParse.m

• LidarProfile.m

• LidarRead.m

• LidarSpin.m

• LidarTest.m

• openport.m

• plotProfile.m

• poseProfile.m

87

• readdata.m

• writedata.m

7) Clohessy-Wiltshire Real Time Simulator Code

• CW.m

• userevent.m

• findminV.m

• plotorb.m

%% testbed.m
% this is the test bed for testing a pose estimation algorithm using
% points
% Written by LCDR Blake Eikenberry, 2005-2006

clc; close all;
fl=1; % focal length

% define figure
obj.name = 'triangle';
obj.points=[-.5 -.5 .5 ;
 -.5 .5 .5 ;
 0 0 0];
obj.path=[1 2 3 1];

makexform(obj)

% test pose - try different poses
rot=[45,-20,40]; % degrees
pos=[1,-3,10];

[err, Pe]=poseesttest(obj,[rot pos],fl)

% define figure
obj.name = 'square';
obj.points=[-.5 -.5 .5 .5;
 -.5 .5 .5 -.5;
 0 0 0 0];
obj.path=[1 2 3 4 1];

%% poseesttest.m
% this function takes an object in 3-space, projects it onto a focal plane
% adds noise, and then tries to estimate the pose of the object using only
% the noisy projection in 2-space.
% Written by LCDR Blake Eikenberry, 2005-2006

function [err, Pe]=poseesttest(obj,X,fl)

88

% get simulated image points
X(1:3)=[deg2rad(X(1:3))];
[p,P]=simphoto(obj, X, fl);

% p=simulated points on image
% P=actual points in space; the unknown
plotobj(obj,P,3,'b'); hold on; plotobj(obj,p,3,'b:');
figure; plotobj(obj,p,2,'b');

p(3,:)=[]; p=p(:); % reshape points to match non linear functions

Xi=[0,0,0,0,0,20]; % initial guess
Xe=poseest(obj, p, Xi, fl);

[pe,Pe]=simphoto(obj,Xe,fl);

hold on; plotobj(obj,pe,2,'r:');

err=Xe-X;

%% makexfrom.m
% this function wil creat the proper transform to project it
% from 3-space to 2-space
% Written by LCDR Blake Eikenberry, 2005-2006

function s=makexform(obj)
syms x y z a b g f real
pos=[x;y;z]; % position
rot=[a,b,g]; % rotation
Rabg = [cos(g) -sin(g) 0; sin(g) cos(g) 0; 0 0 1]*...
 [cos(b) 0 sin(b); 0 1 0; -sin(b) 0 cos(b)]*...
 [1 0 0; 0 cos(a) -sin(a); 0 sin(a) cos(a)];
P=Rabg*obj.points;
% translate the object
for i=1:length(P)
 P(:,i)=P(:,i)+pos;
end
clear s;
for i=1:length(P);
 s(:,i)=simple([P(1,i)*f/P(3,i);P(2,i)*f/P(3,i)]);
end
s=s(:);

%% posexform.m
% this function perfroms the 3-D to 2-D transfrom on a paerticular object
% Written by LCDR Blake Eikenberry, 2005-2006

function X=posexform(v,p,f)
a=v(1); b=v(2); g=v(3); x=v(4); y=v(5); z=v(6);
X=[

[-(cos(g)*cos(b)-sin(g)*cos(a)+cos(g)*sin(b)*sin(a)-2*x)*f/(sin(b)-
cos(b)*sin(a)+2*z)]
[-(sin(g)*cos(b)+cos(g)*cos(a)+sin(g)*sin(b)*sin(a)-2*y)*f/(sin(b)-
cos(b)*sin(a)+2*z)]
[(-cos(g)*cos(b)-
sin(g)*cos(a)+cos(g)*sin(b)*sin(a)+2*x)*f/(sin(b)+cos(b)*sin(a)+2*z)]
[(-
sin(g)*cos(b)+cos(g)*cos(a)+sin(g)*sin(b)*sin(a)+2*y)*f/(sin(b)+cos(b)*sin(a)+2
*z)]

89

[-(cos(g)*cos(b)-sin(g)*cos(a)+cos(g)*sin(b)*sin(a)+2*x)*f/(sin(b)-
cos(b)*sin(a)-2*z)]
[-(sin(g)*cos(b)+cos(g)*cos(a)+sin(g)*sin(b)*sin(a)+2*y)*f/(sin(b)-
cos(b)*sin(a)-2*z)]

];
X=X-p;

return

% square
[(cos(g)*cos(b)-sin(g)*cos(a)+cos(g)*sin(b)*sin(a)-2*x)*f/(-
sin(b)+cos(b)*sin(a)-2*z)]
[(sin(g)*cos(b)+cos(g)*cos(a)+sin(g)*sin(b)*sin(a)-2*y)*f/(-
sin(b)+cos(b)*sin(a)-2*z)]
[(-cos(g)*cos(b)-
sin(g)*cos(a)+cos(g)*sin(b)*sin(a)+2*x)*f/(sin(b)+cos(b)*sin(a)+2*z)]
[(-
sin(g)*cos(b)+cos(g)*cos(a)+sin(g)*sin(b)*sin(a)+2*y)*f/(sin(b)+cos(b)*sin(a)+2
*z)]
[-(cos(g)*cos(b)-sin(g)*cos(a)+cos(g)*sin(b)*sin(a)+2*x)*f/(sin(b)-
cos(b)*sin(a)-2*z)]
[-(sin(g)*cos(b)+cos(g)*cos(a)+sin(g)*sin(b)*sin(a)+2*y)*f/(sin(b)-
cos(b)*sin(a)-2*z)]
[-(cos(g)*cos(b)+sin(g)*cos(a)-
cos(g)*sin(b)*sin(a)+2*x)*f/(sin(b)+cos(b)*sin(a)-2*z)]
[(-sin(g)*cos(b)+cos(g)*cos(a)+sin(g)*sin(b)*sin(a)-
2*y)*f/(sin(b)+cos(b)*sin(a)-2*z)]

%% simphoto.m
% this function takes an object in 3-space and plots it's projection
% onto a 2-D plane
% Written by LCDR Blake Eikenberry, 2005-2006

function [p,P]=simphoto(obj, X, f)
pos=X(4:6)'; % position
rot=X(1:3); % rotation

a = rot(1); b = rot(2); g = rot(3);
Rabg = [cos(g) -sin(g) 0; sin(g) cos(g) 0; 0 0 1]*...
 [cos(b) 0 sin(b); 0 1 0; -sin(b) 0 cos(b)]*...
 [1 0 0; 0 cos(a) -sin(a); 0 sin(a) cos(a)];
P=round(Rabg*obj.points*1e2)/1e2;
% translate the object
for i=1:length(P)
 P(:,i)=P(:,i)+pos;
end
p=[];
for i=1:length(P);
 p(:,i)=[P(1,i)*f/P(3,i);P(2,i)*f/P(3,i);f];
end

%% poseest.m
% this function take an object defined by corner points

90

% and it's projection on a 2-D plane and tries to estimate it's
% pose in 3-space
% Written by LCDR Blake Eikenberry, 2005-2006

function [Xe]=poseest(obj, p, xi, fl)
warning off Optimization:fsolve:NonSquareSystem
[Xe,FVAL,EXITFLAG,OUTPUT]=fsolve(@posexform,xi,optimset('fsolve'),p,fl);

%% plotobj.m
% This function simply plots an object in 3-space
% Written by LCDR Blake Eikenberry, 2005-2006

function []=plotobj(obj,p,D,def)
ind=obj.path;
path=p(:,ind);
path=path';
x=path(:,1);
y=path(:,2);
z=path(:,3);
if D==3
 plot3(x,z,y,def); hold on;
 plot3(0,0,0,'r.')
 xlabel('x'); ylabel('z'); zlabel('y');
else
 plot(x,y,def); hold on;
 plot(0,0,'r.')
 xlabel('x'); ylabel('y');;
end
axis equal; grid on;
hold off;

%% computetraj.m
% this function computes a trajectory for the AMPHIS testbed using the
% Direct Calculus of Variation Method
% Written by LCDR Blake Eikenberry, 2005-2006
% Much help from Oleg Yakimenko

function traj=computetraj(c)

% tic
% min = fminHJ(@(x) cost(x,c), [8,0,0,0,1,0,3,0,0,0,0,0,0])
% toc

min = [10.4805;0;0;0;1;0;3;.6499;.1158;.3888;.2599;-.1065;-1.1829];

[traj]=trajectory(min,c);
%[C,J,P]=cost(min,c)

%%%

function [COST,J,P]=cost(FREE,CONST)

Fmax=1; Tmax=10; W=5; D=5; MSD=.41;

traj=trajectory(FREE,CONST);
time=traj.time; dtime=traj.dtime;

91

T=traj.T; F=traj.F; d=traj.delta;
x=traj.x; y=traj.y;
xp=traj.xp; yp=traj.yp;

% calulate cost and penalty functions

% J=[1 1 0]/2* ...
% [time(1,end); ...
% abs(time(2,end)-(time(1,end)))+abs(time(3,end)-time(2,end)); ...
% sum(sum(F.*dtime))];
%
% P=[1 1 0 0 0 0]/2* ...
% [sum(sum(max(0, F-Fmax).^2)); ...
% sum(sum(max(0,abs(T)-Tmax).^2)); ...
% sum(sum(max(0,abs(x-D/2)-D/2+MSD).^2 + max(0,abs(y-W/2)-W/2+MSD).^2));
...
% sum(max(0,2*MSD-sqrt((xp(1,:).*dtime(1,:)-
xp(2,:).*dtime(2,:)).^2+(yp(1,:).*dtime(1,:)-yp(2,:).*dtime(2,:)).^2))); ...
% sum(max(0,2*MSD-sqrt((xp(1,:).*dtime(1,:)-
xp(3,:).*dtime(3,:)).^2+(yp(1,:).*dtime(1,:)-yp(3,:).*dtime(3,:)).^2))); ...
% sum(max(0,2*MSD-sqrt((xp(3,:).*dtime(3,:)-
xp(2,:).*dtime(2,:)).^2+(yp(3,:).*dtime(3,:)-yp(2,:).*dtime(2,:)).^2)))];

J=norm(time(:,end))+abs(max(max(F)));
P=norm(sum(max(0,abs(x-D/2)-D/2+MSD).^2 + max(0,abs(y-W/2)-W/2+MSD).^2));
COST=[.2 .8]*[J; P];
COST=norm(time(:,end)-[30;15;25]);
%fprintf('%0.2f, %0.2f\n', norm(time(:,end)), abs(max(max(F))))

%%%

function traj=trajectory(FREE,CONST)

TAUf=FREE(1);
% POSf=FREE(2:4)';
POSf=[3.5;2;-1];
BASE=1;
%XPPP0=FREE(BASE+(1:3)).*cos(FREE(BASE+(4:6)));
%YPPP0=FREE(BASE+(1:3)).*sin(FREE(BASE+(4:6)));
XPPP0=[0; 0; 0];
YPPP0=[0; 0; 0];

XPPPf=FREE(BASE+(7:9)).*cos(FREE(BASE+(10:12)));
YPPPf=FREE(BASE+(7:9)).*sin(FREE(BASE+(10:12)));

X0=CONST(1:3); Y0=CONST(4:6); T0=CONST(7:9);
U0=CONST(10:12); V0=CONST(13:15); W0=CONST(16:18);

PE2f=CONST(19:21); PE3f=CONST(22:24);

[IG1,IG2,STf] = pe2st(POSf, PE2f, PE3f);
Xf=STf(:,1); Yf=STf(:,2); Tf=STf(:,3);

syms tauf x0 xp0 xpp0 xppp0 xf xpf xppf xpppf real
A=[1 0 0 0 0 0 0 0;...
 0 1 0 0 0 0 0 0;...
 0 0 1 0 0 0 0 0;...
 0 0 0 1 0 0 0 0;...
 1 tauf tauf^2/2 tauf^3/6 tauf^4/24 tauf^5/60 tauf^6/120 tauf^7/210;...
 0 1 tauf tauf^2/2 tauf^3/6 tauf^4/12 tauf^5/20 tauf^6/30;...
 0 0 1 tauf tauf^2/2 tauf^3/3 tauf^4/4 tauf^5/5;...
 0 0 0 1 tauf tauf^2 tauf^3 tauf^4];
b=[x0 xp0 xpp0 xppp0 xf xpf xppf xpppf]';

92

a=A\b;
a=collect(a,tauf);
N=length(a);

% define boundary conditions
% {'x0','xp0','xpp0','xppp0','xf','xpf','xppf','xpppf','tauf'}
BND{1}={X0(1),U0(1),0,XPPP0(1),Xf(1),0,0,XPPPf(1),TAUf};
BND{2}={X0(2),U0(2),0,XPPP0(2),Xf(2),0,0,XPPPf(2),TAUf};
BND{3}={X0(3),U0(3),0,XPPP0(3),Xf(3),0,0,XPPPf(3),TAUf};
BND{4}={Y0(1),V0(1),0,YPPP0(1),Yf(1),0,0,YPPPf(1),TAUf};
BND{5}={Y0(2),V0(2),0,YPPP0(2),Yf(2),0,0,YPPPf(2),TAUf};
BND{6}={Y0(3),V0(3),0,YPPP0(3),Yf(3),0,0,YPPPf(3),TAUf};
BND{7}={T0(1),W0(1),0,0,Tf(1),0,0,0,TAUf};
BND{8}={T0(2),W0(2),0,0,Tf(2),0,0,0,TAUf};
BND{9}={T0(3),W0(3),0,0,Tf(3),0,0,0,TAUf};
dtau=.5; tau=[0:dtau:TAUf];

clear A
% Calculate trajecotries (3+3 7th order case)
for i=1:9
 A{i}=subs(a,...
 {'x0','xp0','xpp0','xppp0','xf','xpf','xppf','xpppf','tauf'},...
 BND{i});
 Ax{i} =diag([1,1,1/2,1/6,1/24,1/60,1/120,1/210])*A{i};
 Axp{i} =diag([0,1,1,1/2,1/6,1/12,1/20,1/30])*A{i};
 Axpp{i} =diag([0,0,1,1,1/2,1/3,1/4,1/5])*A{i};
 Axppp{i} =diag([0,0,0,1,1,1,1,1])*A{i};
 Cx(i,:) =Ax{i}([N:-1:1]);
 Cxp(i,:) =Axp{i}([N:-1:2]);
 Cxpp(i,:) =Axpp{i}([N:-1:3]);
 Cxppp(i,:)=Axppp{i}([N:-1:4]);
 X(i,:) =polyval(Cx(i,:),tau);
 Xp(i,:) =polyval(Cxp(i,:),tau);
 Xpp(i,:) =polyval(Cxpp(i,:),tau);
 Xppp(i,:) =polyval(Cxppp(i,:),tau);
end % i

% Put trajectories in robot terms

for i = 1:3
 x(i,:)=X(i,:);
 xp(i,:)=Xp(i,:);
 xpp(i,:)=Xpp(i,:);
 xppp(i,:)=Xppp(i,:);
 y(i,:)=X(i+3,:);
 yp(i,:)=Xp(i+3,:);
 ypp(i,:)=Xpp(i+3,:);
 yppp(i,:)=Xppp(i+3,:);
 t(i,:)=X(i+6,:);
 tp(i,:)=Xp(i+6,:);
 tpp(i,:)=Xpp(i+6,:);
 tppp(i,:)=Xppp(i+6,:);

 % Calculate Controls

 time(i,1)=1e-5; L(i,1)=1;
 u(i,1)=xp(i,1); v(i,1)=yp(i,1);
 V(i,1)=sqrt(u(i,1)^2+v(i,1)^2);
 dtime(i,1)=sqrt((x(i,2)-x(i,1))^2+(y(i,2)-y(i,1))^2)/V(i,1);
 w(i,1)=0; T(i,1)=0;

 for j = 2:length(tau)
 time(i,j)=time(i,j-1)+dtime(i,j-1); L(i,j)=dtau/dtime(i,j-1);

93

 u(i,j)=L(i,j)*xp(i,j); v(i,j)=L(i,j)*yp(i,j);
 V(i,j)=sqrt(u(i,j)^2+v(i,j)^2);
 dtime(i,j)=2*sqrt((x(i,j)-x(i,j-1))^2+(y(i,j)-y(i,j-
1))^2)/(V(i,j)+V(i,j-1));
 w(i,j)=(t(i,j)-t(i,j-1))/dtime(i,j-1)*2-w(i,j-1);
 T(i,j)=(w(i,j)-w(i,j-1))/dtime(i,j-1);
 end % j

 p(i,:)=atan2(ypp(i,:), xpp(i,:));
 F(i,:)=sqrt(xpp(i,:).^2+ypp(i,:).^2).*L(i,:);
 d(i,:)=((xppp(i,:).*ypp(i,:)-xpp(i,:).*yppp(i,:))./...
 (ypp(i,:)+1e-20).*cos(p(i,:)).^2-tp(i,:)).*L(i,:);
end % i

traj.time=time;
traj.T=T;
traj.F=F;
traj.delta=d;
traj.dtime=dtime;
traj.x=x;
traj.y=y;
traj.xp=xp;
traj.yp=yp;
traj.u=u;
traj.v=v;
traj.w=w;
traj.lambda=L;
traj.theta=t;
traj.psi=p;
traj.tau=tau;
traj.alpha=p-t;

%% draw_traj.m
% this function plots trajectory information for analysis
% Written by LCDR Blake Eikenberry, 2005-2006

function draw_traj(traj)

col='brg'; shp='-d.';

tau=traj.tau;
T=traj.T;
F=traj.F;
d=traj.delta;
dtime=traj.dtime;
x=traj.x;
y=traj.y;
L=traj.lambda;
time=traj.time;
t=traj.theta;
p=traj.psi;
u=traj.u;
v=traj.v;
w=traj.w;
alf=traj.alpha;

for i=1:3
 % plot x vs y
 figure(1)

94

 plot(y(i,:),x(i,:),[shp(i) col(i)]); hold on

 figure(2)
 % plot L vs tau
 subplot(5,3,1)
 plot(tau,L(i,:),[shp(i) col(i)]); hold on

 % plot time vs tau
 subplot(5,3,3)
 plot(tau,time(i,:),[shp(i) col(i)]); hold on

 % plot dtime vs tau
 subplot(5,3,2)
 plot(tau,dtime(i,:),[shp(i) col(i)]); hold on

 % plot x vs tau
 subplot(5,3,4)
 plot(tau,x(i,:),[shp(i) col(i)]); hold on

 % plot y vs tau
 subplot(5,3,5)
 plot(tau,y(i,:),[shp(i) col(i)]); hold on

 % plot theta vs tau
 subplot(5,3,6)
 plot(tau,t(i,:),[shp(i) col(i)]); hold on

 % plot psi vs tau
 subplot(5,3,15)
 plot(tau,p(i,:),[shp(i) col(i)]); hold on

 % plot F vs tau
 subplot(5,3,10)
 plot(tau,F(i,:),[shp(i) col(i)]); hold on

 % plot T vs tau
 subplot(5,3,12)
 plot(tau,T(i,:),[shp(i) col(i)]); hold on

 % plot d vs tau
 subplot(5,3,11)
 plot(tau,d(i,:),[shp(i) col(i)]); hold on

 % plot u vs tau
 subplot(5,3,7)
 plot(tau,u(i,:),[shp(i) col(i)]); hold on

 % plot v vs tau
 subplot(5,3,8)
 plot(tau,v(i,:),[shp(i) col(i)]); hold on

 % plot w vs tau
 subplot(5,3,9)
 plot(tau,w(i,:),[shp(i) col(i)]); hold on

 % plot w vs tau
 subplot(5,3,13)
 plot(y(i,:),x(i,:),[shp(i) col(i)]); hold on

 % plot alpha vs tau
 subplot(5,3,14)
 plot(tau,alf(i,:),[shp(i) col(i)]); hold on
end % i

95

% label plots

figure(1)
xlabel('y'), ylabel('x')
axis equal, axis([0 14 0 16]*.3048)

figure(2)
subplot(5,3,1), ylabel('\lambda')
subplot(5,3,2), ylabel('\Delta t (s)')
subplot(5,3,3), ylabel('t (s)')
subplot(5,3,4), ylabel('x (m)')
subplot(5,3,5), ylabel('y (m)')
subplot(5,3,6), ylabel('\psi (rad)')
subplot(5,3,7), ylabel('u (m/s)')
subplot(5,3,8), ylabel('v (m/s)')
subplot(5,3,9), ylabel('\omega (rad/s)')
subplot(5,3,10), ylabel('F (N/kg)')
subplot(5,3,11), ylabel('\delta (rad/s)')
subplot(5,3,12), ylabel('T (s^{-2})')
subplot(5,3,13), ylabel('TBD')
subplot(5,3,14), ylabel('\alpha (rad)')
subplot(5,3,15), ylabel('\alpha + \psi (rad)')
legend('Robot_1', 'Robot_2', 'Robot_3',0)

for i = 1:15
 subplot(5,3,i)
 xlabel('\tau'),% axis tight
end

subplot(5,3,13), ylabel('x-axis (m)'), xlabel('y-axis (m)')
axis equal, axis([0 14 0 16]*.3048)

function[x,fval,exitflag]=fminHJ(Fun,x)
%FMINHJ Multidimensional unconstrained nonlinear minimization (Hooke-Jeeves).
% X = FMINHJ(FUN,X0) starts at X0 and attempts to find a local minimizer
% X of the function FUN. FUN is a function handle. FUN accepts input X
% and returns a scalar function value F evaluated at X. X0 can be a scalar
% or vector.
% [X,FVAL]= FMINHJ(...) returns the value of the objective function,
% described in FUN, evaluated at X.
% [X,FVAL,EXITFLAG] = FMINHJ(...) returns an EXITFLAG that describes
% the exit condition of FMINHJ. Possible values of EXITFLAG and the
% corresponding exit conditions are
%
% 1 FMINSEARCH converged to a solution X.
% 0 Maximum number of function evaluations or iterations reached.
%
% Examples
% FUN can be specified using @:
% X = fminHJ(@sin,3)
% finds a minimum of the SIN function near 3.
%
% FMINHJ uses the Hooke-Jeeves pattern search (direct search) method.
%

% Reference: Hooke, R., and Jeeves, T.A., "'Direct Search' Solution of
% Numerical and Statistical Problems," Journal of the Assoc. Comput. Mach.,
% Vol.8, No.2, 1961, pp.212-229.

% Copyright 2006 by Oleg Yakimenko

96

Fun = fcnchk(Fun); % place Fun into "function" (inline) form

prnt=0; % printout all intermediate steps

sumb=[' ','*'];

% all varied parameters should have the same scale (however here it's assumed
% that the last varied parameter is the largest, so that the step size will
% be defined using its scale)
n = length(x); % number of varied parameters
scale = abs(x(n)); if scale == 0, scale=n; end

hvar0 = scale/10.; % initial step size (10% of the scale)
hvarf = hvar0/1000.; % final step size / x-tolerance (.01% of the scale)

eps = 0.000000001; % function tolerance

k = hvar0; % set the initial step

%% Check the original (basic) point
indexbp = 0; % set the basic point (BP) search index
indexps = 0; % set the pattern search (PS) index

 y = x; % set the latest basic point
 p = x; % set the suggested pattern search point
 b = x; % set the previous pattern search point

fnew = feval(Fun,x); % call minimization function
indexbp=indexbp+1; % increment the basic point search index

fold = fnew;
ps = 0; % set the pattern search flag
bp = 0; % set the pattern search flag

 index=indexbp+indexps;
 if prnt == 1,
 varpar(index)=x(1);
 bpflag(index)=bp;
 perindex(index)=fnew;
 step(index)=k; end

 if prnt == 1
 disp(' ')
 header = ' Iteration x f(x) step BPflag PSflag';
 disp(header)
 end

%% Keep looking for the minimum ...
% ... while the step size k is greater than the x-tolerance and the value
% of the objective function is greater than the function tolerance
while (k >= hvarf) & (abs(fnew) > eps)

index=indexbp+indexps;
 if prnt == 1
 disp(sprintf('%6.0f %8.5f %-10.3g %6.3g %c %c',...
 index, x(1), fnew, k, sumb(bp+1),sumb(ps+1)));
 end

%% Continue the pattern search ...
% ... if the objective function decreased compared to the previous 'pattern'
% trial, continue the pattern search, i.e. make the same move in the
% same direction

97

if (fold - fnew > eps) & (ps == 1)
exitflag = 'Continuing the pattern search';

 p = 2.*y-b; % compute the suggested PS point as b+2*(y-b)
% !!! For constrained optimisation: This is the place to intervene!!!
 b = y; % reassign the latest BP to the previous PS point
 x = p; % assign the suggested PS point to the trial point
 y = x;

z=feval(Fun,x); % check the lates trial point
indexps=indexps+1; % increment the PS index

 index=indexbp+indexps;
 if prnt == 1,
 varpar(index)=x(1);
 bpflag(index)=bp;
 perindex(index)=fnew;
 step(index)=k; end

fold=fnew;
fnew=z;

%% Switch from searching around the basic point to the pattern search ...
% ... if the objective function decrease was achieved during a search
% around the basic point
elseif (fold - fnew > eps) & (ps == 0)
exitflag = 'Switching from BP to PS';

bp = 0; % lower the BP flag
ps = 1; % rise the PS flag

%% Stop PS, make one backward step and perform a new basic point search ...
% ... if the last pattern step failed
elseif (fold - fnew <= eps) & (ps == 1)
exitflag = 'Stepping back to start a new BP search';

 p = b; % set everything to be equal to the previous PS point
 y = b;
 x = b;

fnew=feval(Fun,x);
indexps=indexps+1; % increment the PS index

 index=indexbp+indexps;
 if prnt == 1,
 varpar(index)=x(1);
 bpflag(index)=bp;
 perindex(index)=fnew;
 step(index)=k; end

fold=fnew;
ps=0; % lower the PS flag

%% Proceed with the search around the basic point
elseif (fold - fnew <= eps) & (ps == 0)
exitflag = 'Continuing the basic point search';

% if a search around the basic point failed, decrease the step size and
% re-examine a vicinity of the current basic point
 if bp == 1
 k=k/10.; % decrease the step size
 end

98

% explore the basic point by making two steps (forward and backward) in
% each direction
 for j = 1:n
 x(j) = y(j) + k;
% !!! For constrained optimisation: This is the place to intervene!!!
 z=feval(Fun,x);
 indexbp=indexbp+1; % increment the BP index
 index=indexbp+indexps;
 if prnt == 1,
 varpar(index)=x(1);
 bpflag(index)=1;
 perindex(index)=fnew;
 step(index)=k; end
 if z < fnew
 y(j) = x(j);
 else
 x(j) = y(j) - k;
% !!! For constrained optimisation: This is the place to intervene!!!
 z=feval(Fun,x);
 indexbp=indexbp+1; % increment the BP index
 index=indexbp+indexps;
 if prnt == 1,
 varpar(index)=x(1);
 bpflag(index)=1;
 perindex(index)=fnew;
 step(index)=k; end
 if z < fnew
 y(j) = x(j);
 else
 x(j) = y(j);
 end
 end
 fnew=min(z,fnew);
 end

bp = 1; % rise the BP flag

end % if end
end % while end

fval=fnew;

index=indexbp+indexps;
 if prnt == 1
 disp(sprintf('%6.0f %8.5f %-10.3g %6.3g %c %c',...
 index, x(1), fnew, k, sumb(bp+1),sumb(ps+1)));
 end

if prnt == 1
close all
subplot(3,1,1,'align')
plot(varpar)
hold
plot(varpar.*bpflag,'r*')
%ylim([min(varpar) max(varpar)])
xlabel('Iteration'), ylabel('Variable Parameter')
subplot(3,1,2,'align')
plot(perindex,'r')
xlabel('Iteration'), ylabel('Performance index')
subplot(3,1,3,'align')
semilogy(step,'g')
xlabel('Iteration'), ylabel('Step size')
end

99

return

%% apfg
% this function determines a point to move towards the end state
% and avoid collisiotn

function task = guidance(gcmd, state)

task=gcmd';

v = sqrt(state(4,1)^2+state(5,1)^2);
me = state(1:2,1);
r2 = state(1:2,2);
r3 = state(1:2,3);

d1 = dist(me,task);
d2 = dist(me,r2);
d3 = dist(me,r3);

A= [cosd(90) sind(90); -sind(90) cosd(90)];

% Aviod robot2 if in the way
a= r2-me;
b= task(1:2)-me;
c= min([(a' * b)/d1/d2,1]);
ang = acos(complex(c));

% move tanget to robot
if (all([abs(ang)<.4, d2<d1]))
 task(1:2) = task(1:2) + A*a;
end

% move away from robot
if (d2<1)
 task(1:2) = task(1:2) - 2*a*v;
end

% Aviod robot3 if in the way
a= r3-me;
b= task(1:2)-me;
c= min([(a' * b)/d1/d3,1]);
ang = acos(complex(c));

% move tanget to robot
if (all([abs(ang)<.4, d3<d1]))
 task(1:2) = task(1:2) + A*a;
end

% move away from robot
if (d3<1)
 task(1:2) = task(1:2) - 2*a*v;
end

% find the distance between to robots
function d=dist(v1,v2)
d=sqrt((v1(1)-v2(1))^2+(v1(2)-v2(2))^2);

100

%% global_props.m
% this function defines global properties related to robot size / shape,
% and floor size / shape
% Written by LCDR Blake Eikenberry, 2005-2006

function [robot, floor]=global_props
d2r=pi/180;

%% Define camera (attached to the robot's top)
robot(1).name='Blue';
robot(1).sfov=23*d2r;
robot(1).f=.1;
robot(1).ar=4/3;
robot(1).lc=[0.6 .6 1];
robot(1).dc=[0 0 1]; % Define light green and dark colors

a=1*.3048/2; b=1*.3048/2; h=.6;
robot(1).crns=[...
 -a, -b, 0; % Robot's corners starting from the the left-
 a, -b, 0; % bottom-floor and going clockwise (1-2-3-4);
 a, b, 0;
 -a, b, 0;
 -a, -b, -h; % The same pattern is repeated at the above-floor
 a, -b, -h; % level (5-6-7-8), i.e. 5 is located above 1, etc.
 a, b, -h;
 -a, b, -h];
clear a b h d2r

robot(2)=robot(1); robot(2).name='Red';
robot(2).lc=[1 .6 .6]; robot(2).dc=[1 0 0];
robot(3)=robot(1); robot(3).name='Green';
robot(3).lc=[0.6 1 .6]; robot(3).dc=[0 1 0];

floor.dim=[0, 0, 0; % Square's corners starting from the origin
 16, 0, 0; % (left bottom) and going clockwise
 16, 14, 0;
 0, 14, 0]*.3048;

%% initialize.m
% this function defines initial and final state for an AMPHIS simulation
% Written by LCDR Blake Eikenberry, 2005-2006

% determine trajectories
SAMP_TIME=.003;
id = 3;

portConfig;

fpos.pe2 = [0.5714; 0.5236; 4.1888];
fpos.pe3 = [0.5714; -0.5236; 2.0944];

x0=[.5;3.5;2.5];
y0=[1;2;3.5];
t0=[1;2;3];
u0=[1;1;1]*1e-5;
v0=[1;1;1]*1e-5;
w0=[0;0;0];

% predetermined direct method parameters
c=[x0;y0;t0;u0;v0;w0;fpos.pe2;fpos.pe3];

101

TRAJ=computetraj(c);

THRUSTSIMINIT;

VAR.INITSTATE.x = x0(id);
VAR.INITSTATE.y = y0(id);
VAR.INITSTATE.t = t0(id);
VAR.INITSTATE.xd = u0(id);
VAR.INITSTATE.yd = v0(id);
VAR.INITSTATE.td = w0(id);

%% pe2st.m
% This function takes a robots absolute postion and the pose estimation
% of two other and calculates the range, relitave bearings, and absolute
% postions of the entire system
% Written by LCDR Blake Eikenberry, 2005-2006

function [rng, brg, pos] = pe2st(ref, pe2, pe3)
% this function does not compute the entire relative bearing matrix

r12 = pe2(1); b12 = pe2(2); e12 = pe2(3);
r13 = pe3(1); b13 = pe3(2); e13 = pe3(3);

r23=sqrt(r12^2+r13^2-2*r12*r13*cos(b12-b13));
b21=b12+pi-e12; b31=b13+pi-e13;

pos = [ref';
 ref'+[r12*cos(ref(3)+b12), r12*sin(ref(3)+b12), b12-b21+pi];
 ref'+[r13*cos(ref(3)+b13), r13*sin(ref(3)+b13), b13-b31+pi]];

x2=pos(2,1); y2=pos(2,2); t2=pos(2,3);
x3=pos(3,1); y3=pos(3,2); t3=pos(3,3);

b23=atan2(y3-y2, x3-x2)-t2;
b32=atan2(y2-y3, x2-x3)-t3;

rng = [0, r12, r13; r12, 0, r23; r13, r23, 0];
brg = [0, b12, b13; b21, 0, b23; b31, b32, 0];

%% portConfig.m
% This function configures the port numbers of a robot via id#
% Written by LCDR Blake Eikenberry, 2005-2006

PORT = 25000;

switch id
 case 1
 ndx=[1 2 3];
 PORTsab = PORT + 112;
 PORTsac = PORT + 113;
 PORTsba = PORT + 121;
 PORTsca = PORT + 131;
 PORTmab = PORT + 12;
 PORTmac = PORT + 13;
 PORTmba = PORT + 21;
 PORTmca = PORT + 31;
 case 2

102

 ndx=[2 1 3];
 PORTsab = PORT + 121;
 PORTsac = PORT + 123;
 PORTsba = PORT + 112;
 PORTsca = PORT + 132;
 PORTmab = PORT + 21;
 PORTmac = PORT + 23;
 PORTmba = PORT + 12;
 PORTmca = PORT + 32;
 otherwise
 ndx=[3 2 1];
 PORTsab = PORT + 132;
 PORTsac = PORT + 131;
 PORTsba = PORT + 123;
 PORTsca = PORT + 113;
 PORTmab = PORT + 32;
 PORTmac = PORT + 31;
 PORTmba = PORT + 23;
 PORTmca = PORT + 13;
end

%% THRUSTSIMINIT.m
% This function configures physical property parameters for
% the AMPHIS control plant
% Written by Bill Price, 2006

PARA.Kpx=1;
PARA.Kdx=12;
PARA.Kix=0;
PARA.Kpy=PARA.Kpx;
PARA.Kdy=PARA.Kdx;
PARA.Kiy=PARA.Kix;
PARA.Kpa=1;
PARA.Kda=10;
PARA.Kia=0;
PARA.MASS=25;
PARA.Iz=.25;
PARA.MOMENTARM.x1=0;
PARA.MOMENTARM.y1=.2;
PARA.MOMENTARM.x2=PARA.MOMENTARM.x1;
PARA.MOMENTARM.y2=-PARA.MOMENTARM.y1;
PARA.h_w=.0494;
PARA.THRUSTERACCURACY=5*pi/180;
PARA.MAXTHRUSTSLEW=(500/84)*2*pi/60;
PARA.MAXTHRUSTPOS=180*pi/180;

%% anim_floor.m
%% Animate Floor
% This function animates the AMPHIS simulation
% Written by LCDR Blake Eikenberry, 2005-2006
% Much help from Oleg Yakimenko

function anim_floor(state, u1, v1)
[robot_props, floor_props] = global_props;

103

mov = avifile('robotmov.avi','quality',100,'Compression','Indeo3','fps',5);
time=state.time;
[m,n] = size(time);
for i = 1:ceil(m/100):m
% subplot(1,2,1);
 draw_floor(time(i));
 for j = 1 : 3
 pos=state.signals.values(1:3,j,i);
 draw_robot(pos,robot_props(j));
 switch j
 case 1
 % camera field of view
% draw_dev(j, pos, 'Cam', v1.signals.values(i,1));
 % 360 vectored variable thruster
% draw_dev(j, pos, 'Thruster', u1.signals.values(i,1:2));
 % bill's front/back -pi to pi vectored variable thruster
 draw_dev(j, pos, 'fThruster', u1.signals.values(i,1:2));
 draw_dev(j, pos, 'bThruster', u1.signals.values(i,3:4));
 % lidar output
 draw_dev(j, pos, 'Lidar', v1.signals.values(i,[1:2,4:5]));
 case 2
 case 3
 end
 end
 % draw camera
% subplot(1,2,2);
% data=state.signals.values(1:3,1:3,i)';
% alf=v1.signals.values(i,1)+state.signals.values(3,1,i);
% draw_foto(1, data, alf,0,0)

 mov = addframe(mov,getframe(gcf));
end
mov = close(mov);

%% draw_dev.m
% This function plots various robot devices
% Written by LCDR Blake Eikenberry, 2005-2006

function draw_dev(me, pos, type, u)
rbt_prop=global_props;
x=pos(1); y=pos(2); t=pos(3);

switch type
 case 'Cam'
 a=u+t;
 clr=rbt_prop(me).lc;
 sFoV=rbt_prop(me).sfov;
 rx=40/x; ry=40/y;
 patch(y*[1 1+ry*sin(a-sFoV) 1+ry*sin(a+sFoV) 1],...
 x*[1 1+rx*cos(a-sFoV) 1+rx*cos(a+sFoV) 1],...
 clr, 'LineStyle', 'none', 'FaceAlpha', .25);
 case 'Thruster'
 mag=u(1)*10;
 a=u(2)+t+pi;
 clr='c';
 sFoV=.05;
 rx=mag/x; ry=mag/y;
 patch(y*[1 1+ry*sin(a-sFoV) 1+ry*sin(a+sFoV) 1],...
 x*[1 1+rx*cos(a-sFoV) 1+rx*cos(a+sFoV) 1],...

104

 clr, 'LineStyle', 'none', 'FaceAlpha', .25);
 case 'fThruster'
 mag=u(1)*10;
 d=-rbt_prop(me).crns(1);
 a=u(2)+t;
 clr='c';
 len=.3;
 sFoV=.05;
 rx=mag; ry=mag;
 patch([y+d*sin(t) y+ry*sin(a-sFoV)+d*sin(t) y+ry*sin(a+sFoV)+d*sin(t)
y+d*sin(t)],...
 [x+d*cos(t) x+rx*cos(a-sFoV)+d*cos(t) x+rx*cos(a+sFoV)+d*cos(t)
x+d*cos(t)],...
 clr, 'LineStyle', 'none', 'FaceAlpha', .25);
 plot([y+d*sin(t), y+d*sin(t)+len*sin(a)], [x+d*cos(t),
x+d*cos(t)+len*cos(a)], 'm');
 case 'bThruster'
 mag=u(1)*10;
 d=rbt_prop(me).crns(1);
 a=u(2)+t+pi;
 clr='c';
 len=.3;
 sFoV=.05;
 rx=mag; ry=mag;
 patch([y+d*sin(t) y+ry*sin(a-sFoV)+d*sin(t) y+ry*sin(a+sFoV)+d*sin(t)
y+d*sin(t)],...
 [x+d*cos(t) x+rx*cos(a-sFoV)+d*cos(t) x+rx*cos(a+sFoV)+d*cos(t)
x+d*cos(t)],...
 clr, 'LineStyle', 'none', 'FaceAlpha', .25);
 plot([y+d*sin(t), y+d*sin(t)+len*sin(a)], [x+d*cos(t),
x+d*cos(t)+len*cos(a)], 'm');
 case 'Lidar'
 r12 = u(1); b12 = u(2); r13 = u(3); b13 = u(4);
 x2 = x+r12*cos(t+b12); y2 = y+r12*sin(t+b12);
 x3 = x+r13*cos(t+b13); y3 = y+r13*sin(t+b13);
 plot(y2+.1*randn(1,10),x2+.1*randn(1,10),'.')
 plot(y3+.1*randn(1,10),x3+.1*randn(1,10),'.')
end

%% plot_floor.m
% This function plots the floor for a single frame of the AMPHIS simulation
% Written by LCDR Blake Eikenberry, 2005-2006

function draw_floor(t)
[r_props,f_props]=global_props;

% plot the floor
hold off
RedSquare=f_props.dim;
fill([RedSquare(2,3) RedSquare(3,2)], [RedSquare(1,1) RedSquare(1,2)],'w'),
hold on
axis equal, axis([RedSquare(2,2) RedSquare(3,2) RedSquare(1,1)
RedSquare(2,1)]);
title('Bird''s Eye View');
xlabel('y-axis (East) (m)'), ylabel('x-axis (North) (m)')
text('Color',[0.8471 0.1608 0],'FontAngle','italic',...
 'Position',[.1 .1],...
 'String',['time=' num2str(round(100*t)/100)])

105

%% draw_foto.m
% This function plots a view of the AMPHIS floor from the perspective
% of a robot.
% Written by Oleg Yakimenko and Blake Eikenberry 2006

function draw_foto(ME, FLR, psy, theta, phi)
[robot, floor]=global_props;
% psy=yaw, theta=pitch, phi=roll

X=FLR(ME,1); Y=FLR(ME,2); T=FLR(ME,3);

%% Define parameters of the square in {n} (NED)
RedSquare=floor.dim; % Square's corners starting from the
origin
NumbofPts=length(RedSquare);

%% Define camera (attached to the robot's top)
hc=robot(ME).crns(end); % Camera's hight above the ground
Camera = [X; Y; hc]; % Camera's position in {n}
sFoV=robot(ME).sfov; % Semi-field of view (horizontal)
AsRatio=robot(ME).ar; % Frame's aspect ratio'
(horizontal/vertical)
f=robot(ME).f; % Focal length (m)

R_phi = [1 0 0;
 0 cos(phi) sin(phi);
 0 -sin(phi) cos(phi)];
R_theta = [cos(theta) 0 -sin(theta)
 0 1 0;
 sin(theta) 0 cos(theta)];

%% Define two other robots in {b} (NED) attached to the robot's bottom

if ME==1, ROBOT1=2; ROBOT2=3; end
if ME==2, ROBOT1=1; ROBOT2=3; end
if ME==3, ROBOT1=1; ROBOT2=2; end

% Define light green and dark green colors
RobPos=[FLR(ROBOT1,1),FLR(ROBOT1,2),0; % Origin of the robot's {b} in {n}
 FLR(ROBOT2,1),FLR(ROBOT2,2),0];
RobOr= [FLR(ROBOT1,3);FLR(ROBOT2,3)]; % Orientation of {b} wrt to {n}

L(1,:)=robot(ROBOT1).lc;
D(1,:)=robot(ROBOT1).dc;
L(2,:)=robot(ROBOT2).lc;
D(2,:)=robot(ROBOT2).dc;

CRNS{1}=robot(ROBOT1).crns;
CRNS{2}=robot(ROBOT2).crns;

NumbofRbts=length(RobOr);
for u=1:NumbofRbts
R_r2n(:,:,u) = [cos(RobOr(u)) -sin(RobOr(u)) 0;
 sin(RobOr(u)) cos(RobOr(u)) 0;
 0 0 1];
end

%% Define a camera frame
Uscale=f*tan(sFoV);
Vscale=Uscale/AsRatio;

%% i) Convert the square to the camera frame
R_psy = [cos(psy) sin(psy) 0;

106

 -sin(psy) cos(psy) 0;
 0 0 1];

R_n2c = R_phi*R_theta*R_psy; % Rotation from {n} wrt {c}

imrs=R_n2c*(RedSquare'-Camera*ones(1,NumbofPts));% Coordinates in {c}
azimuth=atan2(imrs(2,:),imrs(1,:));

u0 = f*imrs(2,:)./imrs(1,:); % x-coordinate in {f} (right)
v0 =-f*imrs(3,:)./imrs(1,:); % y-coordinate in {f} (right)

%% ii) Count the number and indices of Visible and Invisible points
indVis=find(imrs(1,:)>0); indInv=find(imrs(1,:)<=0);
nVis=length(indVis); nInv=NumbofPts-nVis;

%% iii) Reoder the points
if (nVis~=1) & (min(indInv)>1 & max(indInv)<NumbofPts)
 fict=indVis;
 indVis=(max(indInv)+1):NumbofPts;
 indVis=[indVis 1:(min(indInv)-1)];
end

%% iv) Assign fictituous points as substitutes for invisible points
u(2:nVis+1)=u0(indVis);
v(2:nVis+1)=v0(indVis);

inleft=indVis(1)-1; if inleft<1, inleft=inleft+NumbofPts; end
inright=indVis(nVis)+1; if inright>NumbofPts, inright=inright-NumbofPts; end

tau1=abs((-sFoV-azimuth(indVis(1)))/(azimuth(inleft)-azimuth(indVis(1))));
tau2=abs((sFoV-azimuth(indVis(nVis)))/(azimuth(inright)-
azimuth(indVis(nVis))));
imrLeft=imrs(:,inleft)*tau1+imrs(:,indVis(1))*(1-tau1);
imrRight=imrs(:,inright)*tau2+imrs(:,indVis(nVis))*(1-tau2);

ul = f*imrLeft(2)/imrLeft(1); % Coordinates of fictituous points in {f}
vl =-f*imrLeft(3)/imrLeft(1);
ur = f*imrRight(2)/imrRight(1);
vr =-f*imrRight(3)/imrRight(1);

u(1)=(-Vscale-vl)*(u(2)-ul)/(v(2)-vl)+ul; v(1)=-Vscale;
u(nVis+2)=(-Vscale-vr)*(u(nVis+1)-ur)/(v(nVis+1)-vr)+ur; v(nVis+2)=-Vscale;

%% v) Convert robots centers from {n} to {c}
imRts=R_n2c*(RobPos'-Camera*ones(1,NumbofRbts)); % Robots coordinates in {c}
distRts=[norm(imRts(:,1),2) norm(imRts(:,2),2)]; % Distance from the origin of
{c}
azimuthRts=atan2(imRts(2,:),imRts(1,:)); % Robots azimuths in {c}

for jr=1:NumbofRbts
 % vi) Convert robot's corners from {b} to {n}
 Robot=CRNS{jr};
 cyl=sqrt(Robot(1)^2+Robot(2)^2); % Cylinder around the robot
 RobCrns(:,:,jr)=R_r2n(:,:,jr)*Robot'+RobPos(jr,:)'*ones(1,8);
 % vii) Default zeroing of left and right planes' coordinates (in {f})
 uR(:,2*jr-1) = zeros(4,1); vR(:,2*jr-1) = zeros(4,1);
 uR(:,2*jr) = zeros(4,1); vR(:,2*jr) = zeros(4,1);
 uRcolor(:,:,jr)=[L(jr,:);D(jr,:)];

 if abs(azimuthRts(jr))-sFoV<pi/2 && distRts(jr)*sin(abs(azimuthRts(jr))-
sFoV)<cyl
 %% viii) Convert visible robot's corners from {n} to {c}

107

 imRtsCrns(:,:,jr)=R_n2c*(RobCrns(:,:,jr)-Camera*ones(1,8)); %
Coordinates in {c}
 %% ix) Determine the closest edge and two adjacent panels (left and
right)
 [dv,in]=min([norm(imRtsCrns(1:3,1,jr)),norm(imRtsCrns(1:3,2,jr)),...
 norm(imRtsCrns(1:3,3,jr)),norm(imRtsCrns(1:3,4,jr))]);

 inL=in+1; if inL>4, inL=inL-4; end
 inR=in-1; if inR<1, inR=inR+4; end

 Panel(:,:,2*jr-1)=[imRtsCrns(:,in,jr),imRtsCrns(:,inL,jr),... % Left
panel
 imRtsCrns(:,inL+4,jr),imRtsCrns(:,in+4,jr)];
 Panel(:,:,2*jr) =[imRtsCrns(:,in,jr),imRtsCrns(:,inR,jr),... % Right
panel
 imRtsCrns(:,inR+4,jr),imRtsCrns(:,in+4,jr)];

 %% x) Determine more distant panel (left or right) to be shown first
 dl=norm(mean(Panel(:,:,2*jr-1),2));
 dr=norm(mean(Panel(:,:,2*jr),2));
 tt=[0,1];
 if dl<dr, tt=[1,0]; uRcolor(:,:,jr)=[D(jr,:);L(jr,:)]; end

 %% xi) Compute {f}-coordinates of the farther and closer panels
 for jt=1:2
 uR(:,2*jr-1+tt(jt))= f*Panel(2,:,2*jr-2+jt)./Panel(1,:,2*jr-2+jt);
 vR(:,2*jr-1+tt(jt))=-f*Panel(3,:,2*jr-2+jt)./Panel(1,:,2*jr-2+jt);
 end

 end % The end of the 'if' structure
end % The end of the 'for' loop

ord=[2,1]; if distRts(2)<distRts(1), ord=[1,2]; end

% u(5)=u(1); v(5)=v(1);
% uR(5,:)=uR(1,:); vR(5,:)=vR(1,:);

fill([-1 1 1 -1], [-1 -1 1 1], 'w','FaceAlpha', 1)
patch(u,v,'c','FaceAlpha', 1);
patch(uR(:,2*ord(1)-1),vR(:,2*ord(1)-1),uRcolor(1,:,ord(1)), 'FaceAlpha', 1);
patch(uR(:,2*ord(1)), vR(:,2*ord(1)), uRcolor(2,:,ord(1)), 'FaceAlpha', 1);
patch(uR(:,2*ord(2)-1),vR(:,2*ord(2)-1),uRcolor(1,:,ord(2)), 'FaceAlpha', 1);
patch(uR(:,2*ord(2)), vR(:,2*ord(2)), uRcolor(2,:,ord(2)), 'FaceAlpha', 1);
axis equal, axis([-Uscale Uscale -Vscale Vscale]);
title (['SimImage from ' robot(ME).name])

%% draw_robot.m
% this function draws a single robot on the AMPHIS floor
% Written by LCDR Blake Eikenberry, 2005-2006

function draw_robot(pos,robot)
x=pos(1); y=pos(2); t=pos(3); % postion/orientation of robot

% Convert robot's corners from {b} to {n}
r2n = [cos(t) -sin(t) 0;
 sin(t) cos(t) 0;
 0 0 1];
RobCrns=r2n*robot.crns'+[x;y;0]*ones(1,8);
fill(RobCrns(2,1:4,1),RobCrns(1,1:4,1),robot.dc)
radius=abs(robot.crns(1));
line([y y+radius*sin(t)],[x x+radius*cos(t)], 'Color', 'y')

108

%% closeport.m
% This function closes and deletes a serial port object
% Written by LCDR Blake Eikeberry, NPS, 2005-2006

function closeport(port)

if port~=0
 fclose(port)
 delete(port)
end

%% hex2decword.m
% This function takes a vector of hex ascii values, pairs them up,
% and converts each pair to a decimal value
% Written by LCDR Blake Eikeberry, NPS, 2005-2006

function out = hex2decword(in)
try
out=[]; j=1;
if any([mod(length(in),4), isempty(in)]), error('wrong size'), end
for i = 1:4:length(in)
 out(j)=hex2dec(char(in(i:i+3)));
 j=j+1;
end
catch
 char (in)
 error('CRASH in hex2decword')
end

%% LidarBaud.m
% This function sets the Baud rate on the SICK LIDAR
% Written by LCDR Blake Eikeberry, NPS, 2005-2006

disp('Set Baud Rate')
data=double('001000080000020100010006000000010008');
writedata(s,data,PRNT);
buffer=readdata(s);
[buffer,msg]=LidarParse(buffer,PRNT);

data=double('00100004000002020001');
writedata(s,data,PRNT);
buffer=readdata(s);
[buffer,msg]=LidarParse(buffer,PRNT);

%% LidarCRC.m
% This function calculates the CRC for the SICK LIDAR
% Written by LCDR Blake Eikeberry, NPS, 2005-2006

function crc=LidarCRC(data)
% Abstract:
% routines for calculating a 16 bits CRC signature using the generator
% polynom x^16 + x^12 + x^5 + 1 as recommended by the ITU.T V.42
% (former CCITT); all routines use a table driven algorithm
% XOR table for CRC algorithm, CRC-16, ITU.T X.25
% polynomial: h1021
crctab = {
 '0000', '1021', '2042', '3063', '4084', '50a5', '60c6', '70e7',...

109

 '8108', '9129', 'a14a', 'b16b', 'c18c', 'd1ad', 'e1ce', 'f1ef',...
 '1231', '0210', '3273', '2252', '52b5', '4294', '72f7', '62d6',...
 '9339', '8318', 'b37b', 'a35a', 'd3bd', 'c39c', 'f3ff', 'e3de',...
 '2462', '3443', '0420', '1401', '64e6', '74c7', '44a4', '5485',...
 'a56a', 'b54b', '8528', '9509', 'e5ee', 'f5cf', 'c5ac', 'd58d',...
 '3653', '2672', '1611', '0630', '76d7', '66f6', '5695', '46b4',...
 'b75b', 'a77a', '9719', '8738', 'f7df', 'e7fe', 'd79d', 'c7bc',...
 '48c4', '58e5', '6886', '78a7', '0840', '1861', '2802', '3823',...
 'c9cc', 'd9ed', 'e98e', 'f9af', '8948', '9969', 'a90a', 'b92b',...
 '5af5', '4ad4', '7ab7', '6a96', '1a71', '0a50', '3a33', '2a12',...
 'dbfd', 'cbdc', 'fbbf', 'eb9e', '9b79', '8b58', 'bb3b', 'ab1a',...
 '6ca6', '7c87', '4ce4', '5cc5', '2c22', '3c03', '0c60', '1c41',...
 'edae', 'fd8f', 'cdec', 'ddcd', 'ad2a', 'bd0b', '8d68', '9d49',...
 '7e97', '6eb6', '5ed5', '4ef4', '3e13', '2e32', '1e51', '0e70',...
 'ff9f', 'efbe', 'dfdd', 'cffc', 'bf1b', 'af3a', '9f59', '8f78',...
 '9188', '81a9', 'b1ca', 'a1eb', 'd10c', 'c12d', 'f14e', 'e16f',...
 '1080', '00a1', '30c2', '20e3', '5004', '4025', '7046', '6067',...
 '83b9', '9398', 'a3fb', 'b3da', 'c33d', 'd31c', 'e37f', 'f35e',...
 '02b1', '1290', '22f3', '32d2', '4235', '5214', '6277', '7256',...
 'b5ea', 'a5cb', '95a8', '8589', 'f56e', 'e54f', 'd52c', 'c50d',...
 '34e2', '24c3', '14a0', '0481', '7466', '6447', '5424', '4405',...
 'a7db', 'b7fa', '8799', '97b8', 'e75f', 'f77e', 'c71d', 'd73c',...
 '26d3', '36f2', '0691', '16b0', '6657', '7676', '4615', '5634',...
 'd94c', 'c96d', 'f90e', 'e92f', '99c8', '89e9', 'b98a', 'a9ab',...
 '5844', '4865', '7806', '6827', '18c0', '08e1', '3882', '28a3',...
 'cb7d', 'db5c', 'eb3f', 'fb1e', '8bf9', '9bd8', 'abbb', 'bb9a',...
 '4a75', '5a54', '6a37', '7a16', '0af1', '1ad0', '2ab3', '3a92',...
 'fd2e', 'ed0f', 'dd6c', 'cd4d', 'bdaa', 'ad8b', '9de8', '8dc9',...
 '7c26', '6c07', '5c64', '4c45', '3ca2', '2c83', '1ce0', '0cc1',...
 'ef1f', 'ff3e', 'cf5d', 'df7c', 'af9b', 'bfba', '8fd9', '9ff8',...
 '6e17', '7e36', '4e55', '5e74', '2e93', '3eb2', '0ed1', '1ef0'};

numofbytes = length(data)/4;
initial_crc = 'ffff';

i=1;
crc=uint16(hex2dec(initial_crc));
while(numofbytes)
 numofbytes = numofbytes-1;
 d = uint16(hex2dec(char(data(i:i+3)))); i = i+4;

 a1=bitshift(crc,8);
 a2=bitand(bitshift(d,-8),255);
 nd=bitshift(crc,-8);
 a3=hex2dec(crctab(nd+1));
 a4=bitor(a1,a2);
 a5=bitxor(a4,a3);

 crc=a5;

 a1=bitshift(crc,8);
 a2=bitand(d,255);
 nd=bitshift(crc,-8);
 a3=hex2dec(crctab(nd+1));
 a4=bitor(a1,a2);
 a5=bitxor(a4,a3);

 crc = a5;
end

crc=double(dec2hex(crc));

while length(crc)<4 % pad with ZERO if required

110

 crc = [48 crc];
end

%% LidarGetprofile
% This function queries the SICK LIDAR for a profile
% Written by LCDR Blake Eikeberry, NPS, 2005-2006

function profile = LidarGetprofile(s,PRNT);

% global s

buffer=[]; profile = [];
data=double('0010000500000301000101B0'); % CRC = '13DD'
writedata(s,data,PRNT);

while length(buffer) ~= 2430
 new=readdata(s);
 if isempty(new),
 return,
 end
 buffer=[buffer new];
end

[buffer,seg]=LidarParse(buffer,PRNT);
seg = hex2decword(seg);

ffff = seg(1);
numofsegs = seg(2);
profile = seg(3:end); % remove ffff and segment number

for i = numofsegs-1:-1:1
 [buffer,seg]=LidarParse(buffer,PRNT);
 seg = hex2decword(seg);
 seg(1)=[]; % remove segment number
 profile=[profile, seg];
end

%% LidarIdle.m
% This function makes the SICK LIDAR idle
% Written by LCDR Blake Eikeberry, NPS, 2005-2006

disp('Idle')
data=double('0010000300000402'); % CRC = '6836'
writedata(s,data,PRNT);

buffer=readdata(s);
[buffer,msg]=LidarParse(buffer, PRNT);

%% LidarMeasure.m
% This function makes the rotating SICK LIDAR activate range measuring
% Written by LCDR Blake Eikeberry, NPS, 2005-2006

disp('Measure')
data=double('0010000300000404'); % CRC='6830'
writedata(s,data,PRNT);

buffer=readdata(s);

111

[buffer,msg]=LidarParse(buffer, PRNT);

%% LidarMeasureStop.m
% This function stops the SICK LIDAR from range measuring
% Written by LCDR Blake Eikeberry, NPS, 2005-2006

disp('Spin')
data=double('00100004000004030000'); % CRC = 'A3E3'
writedata(s,data,PRNT);
buffer=readdata(s);
[buffer,msg]=LidarParse(buffer, PRNT);

%% LidarParse.m
% This function parses data from SICK LIDAR
% Written by LCDR Blake Eikeberry, NPS, 2005-2006

function [res,cmd]=LidarParse(str, PRNT)
res = str; cmd = [];

if isempty(str), return, end

m=str(find(str==2,1):find(str==3,1));
if length(m)>0
 res = str(1+find(str==3,1) : end);

 STX=m(1);
 SID=char(m(2:3));
 DID=char(m(4:5));
 LEN=hex2dec(char(m(6:9)));
 ETX=m(end);

 CRC=m(end-4:end-1);
 crc=LidarCRC(m(2:end-5));
 cmd = m(10:end-5);

 if PRNT
 fprintf('STX = %2i SID = %2s DID = %2s LEN = %5i ETX =
%2i\n',STX,SID,DID,LEN,ETX)
 fprintf('Lidar Message: ')
 fprintf('%c', cmd)
 if hex2dec(char(CRC)) == hex2dec(char(crc))
 fprintf(': CRC match = %c%c%c%c\n', CRC)
 else
 fprintf(': CRC ERR %c%c%c%c//%c%c%c%c\n', crc, CRC)
 error('STOPPING')
 end
 end
end

%% LidarProfile.m
% This function creates a profile from the data buffer from the SICK LIDAR
% Written by LCDR Blake Eikeberry, NPS, 2005-2006

function [profileout,bufferout] = LidarProfile(bufferin,PRNT)
profileout=[]; bufferout=bufferin;
[buffer,seg]=LidarParse(bufferin,PRNT);
if ~isempty(seg)

112

 seg = hex2decword(seg);
else
 return
end

ffff = seg(1);
numofsegs = seg(2);
profile = seg(3:end); % remove ffff and segment number

for i = numofsegs-1:-1:1
 [buffer,seg]=LidarParse(buffer,PRNT);
 if ~isempty(seg)
 seg = hex2decword(seg);
 else
 return
 end
 seg(1)=[]; % remove segment number
 profile=[profile, seg];
end

profileout=profile;
bufferout=buffer;

%% LidarRead.m
% This function reads datas from the SICK LIDAR
% Written by LCDR Blake Eikeberry, NPS, 2005-2006

function [profile,buffer] = LidarRead(s,bufferin,PRNT)

while length(buffer) ~= 2430
 new=readdata(s);
 if isempty(new),
 return,
 end
 buffer=[buffer new];
end

[buffer,seg]=LidarParse(buffer,PRNT);
seg = hex2decword(seg);

ffff = seg(1);
numofsegs = seg(2);
profile = seg(3:end); % remove ffff and segment number

for i = numofsegs-1:-1:1
 [buffer,seg]=LidarParse(buffer,PRNT);
 seg = hex2decword(seg);
 seg(1)=[]; % remove segment number
 profile=[profile, seg];
end

%% LidarSpin.m
% This function starts the SICK LIDAR spinning
% Written by LCDR Blake Eikeberry, NPS, 2005-2006

disp('Spin')
data=double('00100004000004030000'); % CRC = 'A3E3'
writedata(s,data,PRNT);

113

pause(8)
buffer=readdata(s);
[buffer,msg]=LidarParse(buffer, PRNT);

%% LidarTest.m
% This script tests the SICK LIDAR
% Written by LCDR Blake Eikeberry, NPS, 2005-2006

if exist('s'), closeport(s), end
format compact, close all, clear all; clc
s=0; PROERR=0; buffer=[]; PRNT=0; PLT=0;
%% Lidar Initialize;
s = openport('COM1',115200) %opens port with correct settings
LidarBaud; LidarSpin; LidarMeasure;
%% Use Lidar
a=clock;
aviobj = avifile('lidarex.avi')
for cnt = 1:111
 profile = LidarGetprofile(s,PRNT);
 if isempty(profile)
 PROERR=PROERR+1;
 else
 GPS = [.5 .5 pi/180*209];
 clf
 bra = poseProfile(profile,GPS);
 brasize = length(bra);
 fprintf('1: %0.2f, %0.2f ; 2: %0.2f, %0.2f\n', ...
 bra(1), bra(2), bra(4), bra(5))
 for i = 1:3:brasize-1
 if bra(i:i+1)>0
 x=GPS(1)+bra(i+1)*cos(bra(i)+GPS(3));
 y=GPS(2)+bra(i+1)*sin(bra(i)+GPS(3));
 % DEBUG - Plot the robots on the floor
 plot(y,x,'rs'), hold on
 end
 end
 %pause(.35)
 frame = getframe(gca);
 aviobj = addframe(aviobj,frame);
 end
end
aviobj = close(aviobj);

b=clock;
fprintf('%2.2f secs\n', b(4)*60+b(5)*60+b(6)-a(4)*60-a(5)*60-a(6))
%% Quit
LidarMeasureStop;
LidarIdle;
closeport(s)
clear s
PROERR

%% openport.m
% This function creates and opens a serial port object
% Written by LCDR Blake Eikeberry, NPS, 2005-2006

function s = openport(port,baudrate)
s = serial(port, 'BaudRate', baudrate);
fopen(s);

114

%% plotProfile.m
% This function plots a single profile from the SICK LIDAR
% Written by LCDR Blake Eikeberry, NPS, 2005-2006

function [xy] = plotProfile(profile, PRNT)
if length(profile)<5, return, end
if PRNT
 fprintf('LD response %04x \n', profile(1));
 fprintf('PROFILEFORMAT %04x \n', profile(2));
 fprintf('PROFILEINFO %04x \n', profile(3));
 fprintf('SEC1: Angle step %0.3f deg \n', profile(4)/16)
 fprintf('SEC1: Number of points of sector %i \n', profile(5))
 fprintf('SEC1: Start direction of %0.3f deg \n', profile(6)/16)
 fprintf('SEC2: Angle step %0.3f deg \n', profile(7)/16)
 fprintf('SEC2: Number of points of sector %i \n', profile(8))
 fprintf('SEC2: Start direction of %0.3f deg \n', profile(9)/16)
end

deltheta = profile(7)/16*pi/180;
numpoints = profile(8);
startdir = profile(9)/16*pi/180;
point = profile(10:end)/256;
numpoints = length(point);

for i = 1:numpoints
 theta = startdir + (i-1) * deltheta;
 y(i) = point(i)*sin(theta);
 x(i) = point(i)*cos(theta);
end

xy = [x' y'];

% clf
% plot(0,0,'rs'), hold on
clf
plot(xy(:,2),xy(:,1), 'y.')
hold on
axis equal
pause(.05)

%% poseProfile.m
% This function takes the postion of the lidar (robot) in absolute
% coordinates, and the profile returned from the lidar, and returns
% the pose - a vector (1x7) of bearings, ranges, and angles + time
% of the relative postion of the other 2 robots.
%
% Written by LCDR Blake Eikeberry, NPS, 2005-2006

function bra = poseProfile(profile, pos)
% Allocate output variable (max = 10 robots)
bra = zeros(1,10*3+1);

% Check for good Profile
if length(profile)<5, return, end

% Poition of the lidar (abs) and the floor
xr=pos(1); yr=pos(2); tr=pos(3);
crns = [0,0; 0,14; 16,14; 16,0; 0,0] *.3048;

% Rotation matrix to operate on the profile

115

rot = [cos(tr) sin(tr); -sin(tr) cos(tr)];

% Lidar profile data
deltheta = profile(7)/16*pi/180;
numpoints = profile(8);
startdir = profile(9)/16*pi/180;
point = profile(10:end)/256;
numpoints = length(point);

% Process lidar data - group points to make objects and
% xfer relative frame into the abs frame
i=1; obj=1;
b=zeros(1,numpoints); r=zeros(1,numpoints); o=zeros(1,numpoints);
for j = 1:numpoints
 theta = startdir + (i-1) * deltheta;
 b(i)= theta;
 r(i)= point(i);
 if i > 1
 % if contiguous points are far apart, associate with new object
 if abs(r(i) - r(i-1)) > .2
 obj = obj + 1;
 end
 end
 o(i) = obj;
 X = [point(i)*cos(theta), point(i)*sin(theta)] * rot;
 x(i) = X(1) + xr;
 y(i) = X(2) + yr;
 i=i+1;
end

xy = [x' y'];
bro = [b' r' o'];

% Connect points if broken at 0/360 degress
if abs(bro(1,3)-bro(end,3)) < .2
 n = find(bro(:,3)==max(bro(:,3)));
 bro(n,1) = bro(n,1)-2*pi;
 bro(n,3) = 1;
end

% Filter out tiny objects
er=[]; j =1;
for i = 1:max(bro(:,3))
 n=find(bro(:,3)==i);
 rp = xy(min(n),:);
 lp = xy(max(n),:);
 leng=sqrt((rp(1)-lp(1))^2+(rp(2)-lp(2))^2);
 if leng < .2
 er=[er; n];
 else
 bro(n,3) = j;
 j=j+1;
 end
end
xy(er,:)=[];
bro(er,:)=[];

% Filter out objects not on the floor and find a bearing, range and
% attitiude for each object
j=1;
for i = 1 : max(bro(:,3))
 n=find(bro(:,3)==i);
 bear = abs(bro(max(n),1)+bro(min(n),1))/2;

116

 dist = min(bro(n,2))+.3/2;

 % DEBUG - plot the objects w/ numbers
 % fprintf('%2i %5.2f %5.2f\n', i, bear, dist)
 text(xy(min(n),2), xy(min(n),1)-.3, sprintf('%i',i)), hold on
 if mod(bro(max(n),3),2) clr = 'g'; else clr = 'b'; end
 plot(xy(n,2),xy(n,1), [clr '.']), hold on

 % Filter objects if any point is off the floor
 if any([any([xy(n,2)<0]),any([xy(n,1)<0]), ...
 any([xy(n,1)>crns(3,1)]),any([xy(n,2)>crns(3,2)])])
 % OFF_FLOOR=xy(n,:)
 else
 bra(j:j+2) = [bear, dist, 0];
 j=j+3;
 end
end

% DEBUG - Plot the floor and lidar position/orientation
plot(yr,xr,'rs'), hold on
plot([yr yr+.5*sin(tr)],[xr xr+.5*cos(tr)],'r')
plot(crns(:,2), crns(:,1), 'k')
axis equal

% Format the output variable
bra(7)=-1;
bra=bra(1:7);

%% readdata.m
% This function reads data from the serial port for the SICK LIDAR
% Written by LCDR Blake Eikeberry, NPS, 2005-2006

function out = readdata(port)
tic; flag = 1; buffer = [];

while flag
 if port~=0,
 while port.BytesAvailable > 0
 in = fread(port,port.BytesAvailable);
 buffer = [buffer, in'];
 end
 end
 if toc > 1, flag = 0; disp('Lidar timed out during read'), end
 if ~isempty(buffer)
 if buffer(end)==3, flag = 0; end
 end
end

out=double(buffer);

%% writedata.m
% This function writes data to the serial port for the SICK LIDAR
% Written by LCDR Blake Eikeberry, NPS, 2005-2006

function err = writedata(port,data, PRNT)
% data is a 1xN array of double

if mod(length(data),4)

117

 err = 1;
else
 err = 0;
 CRC=LidarCRC(data);
 if PRNT
 fprintf('SEND:'),
 fprintf('%c', data),
 fprintf(' %c%c%c%c\n', CRC)
 end
 if port ~= 0,
 try
 fwrite(port,[2 data CRC 3])
 catch
 disp('Lidar timeout during write')
 end
 end
end

%% CW.m
%% CW/Hill's Equation Real-time Interactive Simulator
%
% MA4362 Advanced Astrodynamics / Prof. Donald Danielson
% Code written by LCDR Blake Eikenberry, Spring 2006
% for Relative Motion and Proximity Operations Project with
% LCDR Jason Hall, LT Bill Price, and LT Ryan Lewis
%
% References:
% Vallado, David A., Fundamentals of Astrodynamics and Applications, Microcosm
Press, 2001
% Alfriend, Terry, Notes on Relative Motion of Neighboring Satellites, NPS,
2006
% Newman, Jim, Lectures on RPOP and the Space Shuttle/ISS rendezvous, NPS, 2006
% >> Help screen available by pressing '?' <<

clc; close all; format compact; clear all;
global code, code = 100;
a=7e3; Mu=398600.4415;
n=sqrt(Mu/a^3);

fuel=0; tic; t0=clock; trail=0; az=45; el=15; inc=0;
pdtr = 1; cntr = 1; pdtrl= round(2*pi/n); zoom = 50; dV=.1; scrnmode=1;
figure('KeyPressFcn', @userevent);
disp('Press ? for help')
% aviobj = avifile('CWmovie.avi')

% Set initial conditions
ic = 1;
switch ic
 case 1 % Specified
 x0=100;y0=120;z0=140;
 u0=0; v0=0; w0=0;
 case 2 % Circle on relative orbit plane
 C=6; D2=3*C^2;
 x0=0; y0=2*C; z0=0;
 u0=n*C; v0=0; w0=n*sqrt(D2-z0^2);
 case 3 % Circle on projected y-z plane
 C=6; D2=4*C^2;
 x0=0; y0=2*C; z0=0;
 u0=n*C; v0=0; w0=n*sqrt(D2-z0^2);

118

 case 4 % Lagging y
 C=6; D2=3*C^2;
 xc=1; yc0=1; zc=1; vc=3*n*xc/-2;
 x0=xc; y0=2*C+yc0; z0=zc;
 u0=n/2*(y0-yc0);
 v0=(vc+6*n*x0)/-3;
 w0=n*sqrt(D2-z0^2);
 otherwise % Random
 x0=10*randn(1); y0=10*randn(1); z0=10*randn(1);
 u0=randn(1); v0=randn(1); w0=randn(1);
end

while code
 tt0=toc; inc=inc+1;
 t = linspace(tt0, tt0+pdtrl, 1000);
 psy = n*t;
 x = -(2*v0/n+3*x0)*cos(psy) + (u0/n)*sin(psy)+(4*x0+2*v0/n);
 y = (y0-2*u0/n)+(4*v0/n+6*x0)*sin(psy)+2*u0/n*cos(psy)-(6*x0+3*v0/n)*psy;
 z = z0*cos(psy)+(w0/n)*sin(psy);
 u = (2*v0+3*x0*n)*sin(psy) + (u0)*cos(psy);
 v = (4*v0+6*x0*n)*cos(psy) - 2*u0*sin(psy)-(6*x0*n+3*v0);
 w = -z0*sin(psy)*n+w0*cos(psy);
 d = norm([x(1); y(1); z(1)]); % cartesian distance
 tti=findmindV([x(1),y(1),z(1),n]); % velocity optimal time-to-intercept
 vo=((6*x(1)*(n*tti-sin(n*tti))-y(1))*n*sin(n*tti)-2*n*x(1)*(4-
3*cos(n*tti))*(1-cos(n*tti)))/...
 ((4*sin(n*tti)-3*n*tti)*sin(n*tti)+4*(1-cos(n*tti))^2);
 uo=-(n*x(1)*(4-3*cos(n*tti))+2*(1-cos(n*tti))*vo)/sin(n*tti);
 wo=-z(1)*n*cot(n*tti);
 ve=-2*x(1)*n;
 du=0; dv=0; dw=0;

 % Trail for View 5
 Psy=n*etime(clock,t0);
 R=[cos(Psy),-sin(Psy),0;sin(Psy),cos(Psy),0;0,0,1];
 trail=trail+1;
 P(:,trail)=R*[x(1);y(1);z(1)];
 Pt(:,trail)=R*[x(1);y(1);z(1)]+a*R(:,1);

 % Act on user interaction
 switch code
 case 1, du=-dV; dv=-dV;
 case 2, du=-dV;
 case 3, du=-dV; dv=dV;
 case 4, dv=-dV;
 case 5, du=dV*u(1);dv=dV*v(1);dw=dV*w(1);
 case 6, dv=dV;
 case 7, du=dV; dv=-dV;
 case 8, du=dV;
 case 9, du=dV; dv=dV;
 case 10, du=-u(1); dv=-v(1); dw=-w(1);
 case 11, du=uo-u(1); dv=vo-v(1); dw=wo-w(1);
 case 12, dw=dV;
 case 13, dw=-dV;
 case 14, dv=ve-v(1); pdtrl= round(2*pi/n);
 case 100, zoom=1+.12*d;
 case 101, zoom=zoom/1.5;
 case 102, zoom=zoom*1.5;
 case 103, pdtr=pdtr*-1;
 case 104, cntr=cntr*-1;
 case 105, pdtrl=round(pdtrl*1.3);
 case 106, pdtrl=max(round(pdtrl/1.3),10);
 case 107, dV=dV+.01;

119

 case 108, dV=max(dV-.01,.01);
 case 200, scrnmode=0;
 case 201, scrnmode=1;
 case 202, scrnmode=2;
 case 203, scrnmode=3;
 case 209, scrnmode=4;
 case 210, scrnmode=5;
 case 204, az=az+5;
 case 205, az=az-5;
 case 206, el=el+5;
 case 207, el=el-5;
 case 208, pause(5)
 end
 if code >0 && code < 100
 x0=x(1); y0=y(1); z0=z(1);
 v0=v(1)+dv; u0=u(1)+du; w0=w(1)+dw;
 tic; fuel=norm([du;dv;dw])+fuel;
 fprintf('dV = [%6.2f, %6.2f, %6.2f] {%5.2f} m/s\n', du, dv, dw, fuel)
 end
 if code, code =-1; end
 plotorb
end
close all
% aviobj = close(aviobj);

%% userevent.m
%% Change the action 'code' based on keys pressed by the user
% Code written by LCDR Blake Eikenberry, Spring 2006

function [code]=userevent(src,evnt)
global code
switch evnt.Character
 case 'q', code = 0;
 case '1', code = 1;
 case '2', code = 2;
 case '3', code = 3;
 case '4', code = 4;
 case '5', code = 5;
 case '6', code = 6;
 case '7', code = 7;
 case '8', code = 8;
 case '9', code = 9;
 case '0', code = 10;
 case '.', code = 11;
 case '+', code = 12;
 case '-', code = 13;
 case '*', code = 14;
 case ',', code = 100;
 case '>', code = 101;
 case '<', code = 102;
 case 'p', code = 103;
 case 'c', code = 104;
 case ']', code = 105;
 case '[', code = 106;
 case '}', code = 107;
 case '{', code = 108;
 case '?', code = 200;
 case '!', code = 201;
 case '@', code = 202;
 case '#', code = 203;
 case 'g', code = 204;

120

 case 'h', code = 205;
 case 'b', code = 206;
 case 'y', code = 207;
 case ')', code = 98;
 case '(', code = 99;
 case '/', code = 208;
 case '$', code = 209;
 case '%', code = 210;
end

%% findminV.m
% this function finds the velocity optimal time-to-intercept
% Written by LCDR Blake Eikenberry, 2005-2006

function mint=findmindV(IN)
mint=fminsearch(@(x) dV(IN,x), 1);

function V=dV(IN,tti)
n=IN(4);
x=IN(1); y=IN(2); z=IN(3);
vo=((6*x(1)*(n*tti-sin(n*tti))-y(1))*n*sin(n*tti)-2*n*x(1)*(4-3*cos(n*tti))*(1-
cos(n*tti)))/...
 ((4*sin(n*tti)-3*n*tti)*sin(n*tti)+4*(1-cos(n*tti))^2);
uo=-(n*x(1)*(4-3*cos(n*tti))+2*(1-cos(n*tti))*vo)/sin(n*tti);
wo=-z(1)*n*cot(n*tti);
V=sqrt(vo^2+uo^2+wo^2);

%% plotorb.m
%% Plot the orbit based on the current screen mode
% Code written by LCDR Blake Eikenberry, Spring 2006

hold off
scrnsize=[-16 16 -10 10]*zoom;

switch scrnmode
 case 1 % XY Plane
 plot(y(1),x(1),'cs'), hold on;
 if pdtr>0
 plot (y,x, 'y:')
 text(y(end), x(end), sprintf('%0.1f min', pdtrl/60), 'Color',
'y','FontSize', 8)
 text(scrnsize(1)*.99, scrnsize(3)*.9, ['v_e' sprintf('=%6.2f
m/s',ve)], 'Color', 'y','FontName', 'Courier')
 text(scrnsize(2)*.5, scrnsize(3)*.8, ['u_i' sprintf('=%6.2f
m/s',uo)], 'Color', 'y','FontName', 'Courier')
 text(scrnsize(2)*.5, scrnsize(3)*.9, ['v_i' sprintf('=%6.2f
m/s',vo)], 'Color', 'y','FontName', 'Courier')
 text(scrnsize(2)*.5, scrnsize(3)*.7, ['t_i' sprintf('=%6.1f
min',tti/60)], 'Color', 'y','FontName', 'Courier')
 end
 if cntr>0, plot([0 0],[0 zoom], 'g'), plot([0 zoom],[0 0],'g',
'LineWidth', 2),plot([0 0],[0 -zoom],'g:'), end
 text(scrnsize(2)*.5, scrnsize(4)*.9, sprintf('x =%6.2f m',x(1)),
'Color', 'g','FontName', 'Courier')
 text(scrnsize(2)*.5, scrnsize(4)*.8, sprintf('y =%6.2f m',y(1)),
'Color', 'g','FontName', 'Courier')
 text(scrnsize(2)*.5, scrnsize(4)*.7, sprintf('u =%6.2f m/s',u(1)),
'Color', 'g','FontName', 'Courier')
 text(scrnsize(2)*.5, scrnsize(4)*.6, sprintf('v =%6.2f m/s',v(1)),
'Color', 'g','FontName', 'Courier')

121

 xlabel('y-axis (m)'), ylabel('IN PLANE x-axis (m)')
 case 2 % ZY Plane
 plot(y(1),z(1),'cs'), hold on;
 if pdtr>0
 plot(y,z,'y:')
 text(y(end), z(end), sprintf('%0.1f min',pdtrl/60), 'Color',
'y','FontName', 'Courier')
 text(scrnsize(1)*.99, scrnsize(3)*.9, ['v_e' sprintf('=%6.2f
m/s',ve)], 'Color', 'y','FontName', 'Courier')
 text(scrnsize(2)*.5, scrnsize(3)*.8, ['w_i' sprintf('=%6.2f
m/s',wo)], 'Color', 'y','FontName', 'Courier')
 text(scrnsize(2)*.5, scrnsize(3)*.9, ['v_i' sprintf('=%6.2f
m/s',vo)], 'Color', 'y','FontName', 'Courier')
 text(scrnsize(2)*.5, scrnsize(3)*.7, ['t_i' sprintf('=%6.1f
min',tti/60)], 'Color', 'y','FontName', 'Courier')
 end
 if cntr>0, plot([0 0],[0 0],'*'), plot([0 0],[0 zoom], 'g'), plot([0
zoom],[0 0],'g', 'LineWidth', 2), end
 text(scrnsize(2)*.5, scrnsize(4)*.9, sprintf('z =%6.2f m',z(1)),
'Color', 'g','FontName', 'Courier')
 text(scrnsize(2)*.5, scrnsize(4)*.8, sprintf('y =%6.2f m',y(1)),
'Color', 'g','FontName', 'Courier')
 text(scrnsize(2)*.5, scrnsize(4)*.7, sprintf('w =%6.2f m/s',w(1)),
'Color', 'g','FontName', 'Courier')
 text(scrnsize(2)*.5, scrnsize(4)*.6, sprintf('v =%6.2f m/s',v(1)),
'Color', 'g','FontName', 'Courier')
 xlabel('y-axis (m)'), ylabel('OUT OF PLANE z-axis (m)')
 case 3 % XYZ Stationary
 plot3(y(1),x(1),z(1), 'cs'), hold on;
 if pdtr>0
 plot3(y,x,z, 'y:')
 text(y(end), x(end), z(end), sprintf('%0.1f min',pdtrl/60),
'Color', 'y','FontName', 'Courier')
 end
 if cntr>0
 plot3([0 0],[0 0],[0 -zoom*2], 'g')
 plot3([0 0],[0 zoom*2],[0 0], 'g')
 plot3([0 zoom*2],[0 0],[0 0], 'g', 'LineWidth', 2)
 plot3([0 0],[0 -zoom*2],[0 0], 'g:')
 end
 xlabel('y-axis (m)'), ylabel('x-axis (m)'), zlabel('z-axis (m)')
 scrnsize=[-1 1 -1 1 -1 1]*zoom*10;
 view(az,el)
 grid on
 set(gca,'XColor','b','YColor','b','ZColor', 'b')
 case 4 % XYZ Rotating
 Pdtr=R*[x;y;z];
 Px=Pdtr(1,:); Py=Pdtr(2,:); Pz=Pdtr(3,:);
 plot3(P(2,end),P(1,end),P(3,end), 'cs'), hold on;
 if pdtr>0
 plot3(Py,Px,Pz, 'y:')
 text(Py(end), Px(end), Pz(end), sprintf('%0.1f min',pdtrl/60),
'Color', 'y','FontName', 'Courier')
 end
 CTR=R*[0, 0, 0, 0, 0, 1, 0,-1;
 0, 0, 0, 1, 0, 0, 0, 0;
 0, -1, 0, 0, 0, 0, 0, 0]*zoom*2;
 if cntr>0
 plot3(CTR(2,1:2),CTR(1,1:2),CTR(3,1:2), 'g')
 plot3(CTR(2,3:4),CTR(1,3:4),CTR(3,3:4), 'g', 'LineWidth', 2)
 plot3(CTR(2,5:6),CTR(1,5:6),CTR(3,5:6), 'g')
 plot3(CTR(2,7:8),CTR(1,7:8),CTR(3,7:8), 'g:')
 end

122

 xlabel('Y_{ECI}-axis (m)'), ylabel('X_{ECI}-axis (m)'),
zlabel('Z_{ECI}-axis (m)')
 scrnsize=[-1 1 -1 1 -1 1]*zoom*10;
 view(az,el)
 grid on
 set(gca,'XColor','b','YColor','b','ZColor', 'b')
 case 5 % XYZ Rotating and Translated
 if zoom < .08*norm(Pt(:,end)), zoom = .1*norm(Pt(:,end)); end
 Pdtr=R*[x;y;z]+a*R(:,1)*ones(1,length(x));
 Px=Pdtr(1,:); Py=Pdtr(2,:); Pz=Pdtr(3,:);
 plot3(Pt(2,end),Pt(1,end),Pt(3,end), 'cs'), hold on;
 plot3(Pt(2,:),Pt(1,:),Pt(3,:), ':c')
 if pdtr>0
 plot3(Py,Px,Pz, 'y:')
 text(Py(end), Px(end), Pz(end), sprintf('%0.1f min',pdtrl/60),
'Color', 'y','FontName', 'Courier')
 end
 CTR=R*[0, 0, 0, 0, 0, 1, 0,-1;
 0, 0, 0, 1, 0, 0, 0, 0;
 0, -1, 0, 0, 0, 0, 0, 0]*zoom*2+a*R(:,1)*ones(1,8);
 if cntr>0
 plot3(CTR(2,1:2),CTR(1,1:2),CTR(3,1:2), 'g')
 plot3(CTR(2,3:4),CTR(1,3:4),CTR(3,3:4), 'g', 'LineWidth', 2)
 plot3(CTR(2,5:6),CTR(1,5:6),CTR(3,5:6), 'g')
 plot3(CTR(2,7:8),CTR(1,7:8),CTR(3,7:8), 'g:')
 end
 plot3(0,0,0,'*')
 xlabel('Y_{ECI}-axis (m)'), ylabel('X_{ECI}-axis (m)'),
zlabel('Z_{ECI}-axis (m)')
 scrnsize=[-1 1 -1 1 -1 1]*zoom*10;
 view(az,el)
 grid on
 set(gca,'XColor','b','YColor','b','ZColor', 'b')
 case 0 % Help Screen
 plot(0,0, 'cs'), hold on;
 text(1, -1, 'number pad: 1-9')
 text(2, -1, 'activate in-plane thrust')
 text(1, -2, '+/-')
 text(2, -2, '+/- out-of-plane thrust')
 text(1, -3, '0')
 text(2, -3, 'stop relative motion')
 text(1, -4, 'shift-[/]')
 text(2, -4, '+/- \DeltaV amount')
 text(1, -5, 'shift-1/2/3/4/5')
 text(2, -5, 'display mode')
 text(1, -6, 'p')
 text(2, -6, 'on/off predictor')
 text(1, -7, '[/]')
 text(2, -7, '+/- predictor length')
 text(1, -8, 'c')
 text(2, -8, 'on/off center mark')
 text(1, -9, '*')
 text(2, -9, 'orbit in ellipse')
 text(1, -10, '.')
 text(2, -10, 'intercept')
 text(1, -11, '</>')
 text(2, -11, '+/- zoom')
 text(1, -12, ',')
 text(2, -12, 'auto-zoom')
 text(1, -13, '?')
 text(2, -13, 'help screen')
 text(1, -14, 'q')
 text(2, -14, 'quit')

123

 text(1, -18, '\DeltaV used thus far')
 text(2, -18, sprintf('%0.2f m/s',fuel), 'FontWeight', 'demi')
 axis([.9 3.1 -20 0])
 set(gca,'XTickLabel',[],'YTickLabel',[],'ZTickLabel',[])
 set(gca,'XTick',[],'YTick',[],'ZTick',[])
 xlabel('Help Screen')
end
title('CW Real Time Interactive Simulator')
if scrnmode < 3
 clck = clock; hr = clck(4); min = clck(5); sec = clck(6);
 text(scrnsize(1)*.99, scrnsize(4)*.9, sprintf('Time:
%2i:%02i:%02i',hr,min,round(sec)), 'Color', 'g','FontName', 'Courier')
 text(scrnsize(1)*.99, scrnsize(4)*.8, ['|\DeltaV| = ' sprintf('%0.2f m/s',
dV)], 'Color', 'g','FontName', 'Courier')
 text(scrnsize(1)*.99, scrnsize(4)*.7, ['a=' sprintf('%ikm, ', a) 'e=0'],
'Color', 'g','FontName', 'Courier')
end
if scrnmode, axis equal, axis(scrnsize), set(gca, 'Color', 'k'), end
frame = getframe(gca);
% aviobj = addframe(aviobj,frame);

124

THIS PAGE INTENTIONALLY LEFT BLANK

125

LIST OF REFERENCES

1. Romano, M., Friedman, D., & Shay, Tracy. (2005) Laboratory Experimentation
of Autonomous Spacecraft Approach and Docking to a Collaborative Target.
Accepted for publication. To Appear AIAA Journal of Spacecraft and Rockets.

2. Porter, M. (2002). Development and Control of the Naval Postgraduate School

Planar Autonomous Docking Simulator (NPADS). MS Thesis, Dept. of Astro.
and Mech. Eng., NPS.

3. Friedman, D. (2005). Laboratory Experimentation of Autonomous Spacecraft

Docking Using Cooperative Vision Navigation. MS Thesis, Dept. of Astro. And
Mech. Eng., NPS.

4. Shay, T.J. (2005). Design and Fabrication of Planar Autonomous Spacecraft

Simulator with Docking and Fluid Transfer Capability. MS Thesis, Dept. of
Astro. and Mech. Eng., NPS.

5. Hall, Jason. (2006). Design And Integration Of A Three Degrees-Of-Freedom

Robotic Vehicle With Control Moment Gyro For The Autonomous Multi-Agent
Physically Interacting Spacecraft (AMPHIS) Testbed. MS Thesis, Dept. of Astro.
and Mech. Eng., NPS.

6. Price, Bill. (2006). Control System of a Three DOF Spacecraft Simulator by

Vectorable Thrusters and Control Moment Gyros. MS Thesis, Dept. of Astro. and
Mech. Eng., NPS.

7. Hall, Jason. (to be completed September 2009). PhD Dissertation, Dept. of Astro.

and Mech. Eng., NPS.

8. McCamish, Shawn. (to be completed December 2007). Distributed Autonomous

Control of Multiple Spacecraft in Close Proximity Operations. PhD Dissertation,
Dept. Elec. And Comp. Eng., NPS.

9. Styliadis, A. D., Karagiannidis, C. J., Zestas, N. C., Chatzara, K.N., Pose

Estimation from a Single Photograph in a Controlled CAD Environment.

10. Vallado, David A., Fundamentals of Astrodynamics and Applications, Microcosm

Press, 2001

11. Alfriend, Terry, Notes on Relative Motion of Neighboring Satellites, NPS, 2006

12. Newman, Jim, Lectures on RPOP and the Space Shuttle/ISS rendezvous, NPS,

2006.

126

13. SICK. (2004). LD Laser Scanners Product Information.

14. Yakimenko, O., Direct method for Rapid Prototyping of Near-Optimal Aircraft

Trajectories, AIAA Journal of Guidance, Control, and Dynamics, 23(5), 2000,
pp.865-875.

15. Yakimenko, O.A., Kaminer, I.I., Lentz, W.J., Ghyzel, P.A., Unmanned Aircraft

Navigation for Shipboard Landing Using Infrared Vision, IEEE Transactions on
Aerospace and Electronic Systems, 38(4), 2002, pp.1181-1200.

16. Yakimenko, O.A., Dobrokhodov, V.N., Kaminer, I.I., Berlind, R.M., Autonomous

Scoring and Dynamic Attitude Measurement, Proceedings of the 18th AIAA
Aerodynamic Decelerator Systems Technology Conference and Seminar, Munich,
Germany, May 24-25, 2005.

17. Eikenberry, B. D., Yakimenko, O., Romano, M., A Vision Based Navigation

among Multiple Flocking Robots: Modeling and Simulation. Proceedings of the
AIAA Modeling and Simulation Technologies Conference, Keystone, Colorado,
August 22nd, 2006.

18. Ross, I. M., Class notes from Astrodynamic Optimization, AE4850. NPS, 2006.

19. NASA. DARTing Into Space,

http://www.nasa.gov/missions/science/dart_into_space.html.

20. Weismuller, T., Leinz, M., GN&C Technology Demonstrated by the Orbital
Express Autonomous Rendezvous and Capture Sensor System. Preceedings from
the 29th Annual AAS Guidance and Control Conference, Breckenridge, CO, Feb.
4-8, 2006.

21. Sapce Daily. ETS-7 – Orbital Rendezvous and Robotic Mission.
http://www.spacedaily.com/spacenet/text/ets7-b.html. Tokyo, Apr. 2, 1997.

22. ESA. Successful tests of ATV rendezvous replicate the 2007 Jules Verne
mission. http://www.esa.int/SPECIALS/ATV/SEMWCEKKKSE_0.html.

23. Banke, K., Air Force XSS-10 Micro-Satellite Mission a Success.
http://www.space.com/missionlaunches/xss10_update_030130.html. Cape
Canaveral Bureau, Jan. 30, 2003.

24. Mitchell, I. T., Gorton, T. B., Taskov, K., Drews, M. E., Luckey, D., Osborne, M.
L., Page, L. A., Norris, H, L. III, Shepperd, S. W., GN&C Development of the
XSS-11 Micro Satellite for Autonomous Rendezvous and Proximity Operations.
Preceedings from the 29th Annual AAS Guidance and Control Conference,
Breckenridge, CO, Feb. 4-8, 2006.

127

25. Miotto, P., Zimpfer, D., Mamich, H., Autonomous Mission Manager And GN&C
Design for the Hubble Robotic Vechile De-Orbit Module. Preceedings from the
29th Annual AAS Guidance and Control Conference, Breckenridge, CO, Feb. 4-8,
2006.

26. The CX OLEV Space Tug. http://www.orbitalrecovery.com/cxolev.htm.

27. Bosse, A. B., Barnds, W. J., Brown, M. A., Creamer, N. G., Feerst, A., Henshaw,
C. G., Hope, A. S., Kelm, B. E., Klein, P. A., Pipitone, F., Plourde, B. E., Whalen,
B. P., SUMO: Spacecraft for the universal modification of orbits. Procedings of
SPIE Vol. 5419, Bellingham, WA, 2004.

128

THIS PAGE INTENTIONALLY LEFT BLANK

129

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Marcello Romano
Naval Postgraduate School
Monterey, California

4. Jim Newman
Naval Postgraduate School
Monterey, California

